
2. Divide-and-Conquer Approach

Pukar Karki
Assistant Professor

Created by Pukar Karki, IOE

Recursion

● A programming technique in which a function calls itself.

● One of the most effective techniques in programming that
makes problem solving conceptually simple.

Created by Pukar Karki, IOE

Recursive Algorithms

Algorithm 1 : factorial

fact(n)

{

if(n == 0)

 return 1;

else

 return n*fact(n-1);

}

Created by Pukar Karki, IOE

Recursive Algorithms

Algorithm 2 : fibonacci term

fibo(n)

{

if (n == 1 || n==2)

 return 1;

else

 return fibo(n-1) + fibo(n-2);

}

Created by Pukar Karki, IOE

Recursive Algorithms

Algorithm 3: GCD

GCD(a,b)

{

if (b==0)

 return a;

else

 return GCD(b,a%b);

}

Created by Pukar Karki, IOE

Recurrence Relations

✔ Consider the recursive algorithm for computing factorial of a number.

fact(n)

{

if (n == 0) then

 return 1; // base case

else

 return n*fact(n-1); // recursive call

}

T(0) = 1

T(n) = T(n – 1) + O(1) for n > 0

Created by Pukar Karki, IOE

Recurrence Relations

✔ Consider the recursive algorithm for computing fibonacci term

fibo(n)

{

if (n == 1 || n == 2) then

 return 1; // base case

else

 return fibo(n-1)+fibo(n-2); // recursive call

}

T(1) = 1

T(2) = 1

T(n) = T(n – 1) + T(n-2) + O(1) for n > 2

1 1 2 3 5 8

Created by Pukar Karki, IOE

Recurrence Relations

T(0) = 1

T(n) = T(n – 1) + O(1) for n > 0

✔ A recurrence is an equation or inequality that describes a
function in terms of it’s values on smaller inputs.

Created by Pukar Karki, IOE

Recurrence Relations

T(0) = 1

T(n) = T(n – 1) + 2 for n > 0

✔ Let us expand the above equation

T(0) = 1

 ✔ T(n) = T(n – 1) + 2 for n > 0

 ✔ T(n) = T((n – 1) - 1) + 2 + 2 = T(n – 2) + 2.2

 ✔ T(n) = T((n-2) – 1) + 2 + 4 = T(n – 3) + 2.3

.

T(n) = T(n – k) + 2k

We want it to express it in terms of T(0) so, n - k = 0 i.e. n = k.

 ✔ T(n) = T(0) + 2n

 ✔ T(n) = 1 + 2n = c*g(n) where c = 3 and g(n) = n.

 ✔ Therefor, T(n) = O(n)

Created by Pukar Karki, IOE

Recurrence Relations

✔ Solving a recurrence means that we have to obtain a function
defined on the natural numbers that satisfy the recurrence.

✔ To analyze the complexity of recursive algorithms, we represent
them in terms of recurrence relation and use any of the
recurrence relation solving method.

Created by Pukar Karki, IOE

Solving Recurrences

We will study the following methods to solve recurrences in this course.

1. Iteration method.

2. Recursion Tree method.

3. Substitution method.

4. Master method.

Created by Pukar Karki, IOE

Iteration Method

✔ In this method, we expand the given recurrence relation until
the boundary condition is met.

✔ Look at the following example.

Created by Pukar Karki, IOE

Iteration Method

Example 1

Solve the following recurrence relation by using iterative method.

T(n) = 2T(n/2) + 1 when n > 1

T(n) = 1 when n = 1

✔ T(n) = 2T(n/2) + 1

✔ T(n) = 2{2T(n/4) + 1} + 1 = 22T(n/22) + 2 + 1

✔ T(n) = 22{2T(n/23) + 1} + 2 + 1 = 23T(n/23) + 22 + 2 + 1

✔ ……

✔ T(n) = 2kT(n/2k) + 2k-1 +…….. + 4 + 2 + 1

Created by Pukar Karki, IOE

Iteration Method

✔ T(n) = 2kT(n/2k) + 2k-1 +…….. + 4 + 2 + 1 ----------- Eqn i)

✔ Assume, n/2k = 1 or, n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

Created by Pukar Karki, IOE

Iteration Method

✔ Putting the value of n/2k in in Eqn i)

✔ T(n) = 2kT(1) + 2k-1 +…….. + 4 + 2 + 1

✔ T(n) = 2k + 2k-1 +…….. + 4 + 2 + 20

✔ T(n) = 1(2k+1 – 1)/(2-1) {use S
n
= a(rn – 1)/(r - 1)}

✔ T(n) = 2.2k – 1

✔ T(n) = 2.n – 1

✔ T(n) = O(n)

Created by Pukar Karki, IOE

Iteration Method

Example 2

Solve the following recurrence relation by using iterative method.

T(n) = T(n/3) + O(n) when n > 1

T(n) = 1 when n = 1

✔ T(n) = T(n/3) + O(n)

✔ T(n) = T(n/3) + cn

✔ T(n) = T(n/32) + cn/3 + cn

✔ T(n) = T(n/33) + cn/32 + cn/3 + cn

✔ …..

✔ T(n) = T(n/3k) + cn/3k-1 + …… + cn/32 + cn/3 + cn

Created by Pukar Karki, IOE

Iteration Method

✔ T(n) = T(n/3k) + cn/3k-1 + …… + cn/32 + cn/3 + cn ---- Eqn i)

✔ Assume n/3k = 1 or, n = 3k

✔ Taking log
3
 on both sides, log

3
 n = log

3
 3k

✔ Or, log
3
 n = k log

3
 3

✔ k = log
3
 n

Created by Pukar Karki, IOE

Iteration Method

✔ Putting the value of n/3k in in Eqn I)

✔ T(n) = T(n/3k) + cn/3k-1 + …… + cn/32 + cn/3 + cn

✔ T(n) = T(1) + cn/3k-1 + …… + cn/32 + cn/3 + cn

✔ T(n) = 1 +{ cn/3k-1 + …… + cn/32 + cn/3 + cn}

✔ T(n) = 1 + cn(1/3k-1 + …… + 1/32 + 1/3 + 1}

✔ T(n) = 1 + cn{1.(1 – 1/3k)/(1-1/3)}

✔ T(n) = 1 + cn{(1 – 1/n)/(2/3)}

✔ T(n) = 1 + 3c(n-1)/2

✔ T(n) = O(n)

Created by Pukar Karki, IOE

Iteration Method

Example 3

Solve the following recurrence relation by using iterative method.

T(n) = T(n-1) + O(1) when n > 1

T(n) = 1 when n = 1

✔ T(n) = T(n-1) + O(1)

✔ T(n) = T(n-1) + 1

✔ T(n) = T(n-2) + 1 + 1

✔ T(n) = T(n-3) + 1 + 1 + 1

✔ …..

✔ T(n) = T(n-k) + 1 + …… + 1 + 1(k times)

Created by Pukar Karki, IOE

Iteration Method

✔ T(n) = T(n-k) + k ---- Eqn i)

✔ Assume n-k = 1 or, n = 1 + k

✔ k = n - 1

Created by Pukar Karki, IOE

Iteration Method

✔ Putting the value of n-k in in Eqn I)

✔ T(n) = T(n-k) + k

✔ T(n) = T(1) + k

✔ T(n) = 1 + n - 1

✔ T(n) = n

✔ T(n) = O(n)

Created by Pukar Karki, IOE

Iteration Method

Example 4

Solve the following recurrence relation by using iterative method.

T(n) = 2T(n/2) + n when n > 1

T(n) = 1 when n = 1

✔ T(n) = 2T(n/2) + n

✔ T(n) = 2{2T(n/4) + n/2} + n = 22T(n/22)} + n + n

✔ T(n) = 23 T(n/23)} + n+ n + n

✔ …..

✔ T(n) = 2kT(n/2k) + n + ….. + n + n (k times)

Created by Pukar Karki, IOE

Iteration Method

✔ T(n) = 2kT(n/2k) + n + ….. + n + n (k times) ---- Eqn i)

✔ Assume n/2k = 1 or, n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

Created by Pukar Karki, IOE

Iteration Method

✔ Putting the value of n/2k in in Eqn I)

✔ T(n) = 2kT(n/2k) + n + ….. + n + n (k times)

✔ T(n) = n.T(1) + n.k

✔ T(n) = n.1 + n.k

✔ T(n) = k.n + n

✔ T(n) = log
2
 n*n + n

✔ T(n) = n * log
2
 n + n

✔ T(n) = O(n log
2
 n)

Created by Pukar Karki, IOE

Recursion Tree

✔ This method is a pictorial representation of the iteration method.

✔ It takes the form of the tree where at each level nodes are
expanded.

✔ It diagrams the tree of recursive calls and the amount of work
done at each call.

Created by Pukar Karki, IOE

Recursion Tree
Example 1

Solve the following recurrence relation by using recursion tree method.

T(n) = 2T(n/2) + 1 when n > 1

T(n) = 1 when n = 1

1

T(n/2)T(n/2)

Created by Pukar Karki, IOE

Recursion Tree

T(n/22)T(n/22)

1

1

T(n/22)T(n/22)

1

Created by Pukar Karki, IOE

Recursion Tree

11

1

1

11

1

T(n/2k)T(n/2k) T(n/2k)T(n/2k)
T(n/2k)T(n/2k) T(n/2k)T(n/2k)

1 = 2o

2 = 21

4 = 22

2k

Created by Pukar Karki, IOE

Recursion Tree

✔ T(n) = 20 + 21 + ……. + 2k

✔ T(n) = 1 + 2(2k – 1)/(2 – 1) [Use S
n
= a(rn – 1)/(r - 1)]

✔ T(n) = 1 + 2(2k – 1)

✔ T(n) = 2.2k – 1 ---------------- Eqn i)

Created by Pukar Karki, IOE

Recursion Tree

✔ Assume, n/2k = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of 2k in in Eqn i)

✔ T(n) = 2.2k – 1 = 2.n – 1

✔ T(n) = O(n)

Created by Pukar Karki, IOE

Recursion Tree
Example 2

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n/2) + T(n/3) + O(1) when n > 1

T(n) = 1 when n = 1

1

T(n/3)T(n/2)

Created by Pukar Karki, IOE

Recursion Tree

T(n/6)T(n/4)

1

1

T(n/9)T(n/6)

1

Created by Pukar Karki, IOE

Recursion Tree

11

1

1

11

1

T(n/2k)

1 = 2o

2 = 21

4 = 22

2k

Created by Pukar Karki, IOE

Recursion Tree

✔ T(n) ≤ 20 + 21 + ……. + 2k

✔ T(n) = 1 + 2(2k – 1)/(2 – 1)

✔ T(n) = 1 + 2(2k – 1)

✔ T(n) = 2.2k – 1 ---------------- Eqn i)

Created by Pukar Karki, IOE

Recursion Tree

✔ Assume, n/2k = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of 2k in in Eqn i)

✔ T(n) ≤ 2.2k – 1

✔ T(n) ≤ 2.n – 1

✔ T(n) = O(n)

Created by Pukar Karki, IOE

Recursion Tree

Example 3

Solve the following recurrence relation by using recursion tree method.

T(n) = 2T(n/2) + n when n > 1

T(n) = 1 when n = 1

n

T(n/2)T(n/2)

Created by Pukar Karki, IOE

Recursion Tree

T(n/22)T(n/22)

n

n/2

T(n/22)T(n/22)

n/2

Created by Pukar Karki, IOE

Recursion Tree

n/22n/22

n

n/2

n/22n/22

n/2

T(n/2k)T(n/2k) T(n/2k)T(n/2k)
T(n/2k)T(n/2k) T(n/2k)T(n/2k)

n

n

n

n

Created by Pukar Karki, IOE

Recursion Tree

✔ T(n) = n + n + … + n (k times)

✔ T(n) = n.k ---------------- Eqn i)

Created by Pukar Karki, IOE

Recursion Tree

✔ Assume, n/2k = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of k in in Eqn i)

✔ T(n) = n.k

✔ T(n) = n log
2
n

✔ T(n) = O(n log
2
n)

Created by Pukar Karki, IOE

Recursion Tree

Example 4

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n/2) + 1 when n > 1

T(n) = 1 when n = 1

1

T(n/2)

Created by Pukar Karki, IOE

Recursion Tree

1

1

1

T(n/2k)

…….

Created by Pukar Karki, IOE

Recursion Tree

✔ T(n) = 1 + 1 + 1 + …. + T(n/2k) ---------------- Eqn I)

✔ Assume, n/2k = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of n/2k in in Eqn i)

✔ T(n) = 1 + 1 + 1 + … + T(n/2k)

✔ T(n) = 1 + 1 + 1 + ….. + 1(k times) + T(1)

✔ T(n) = k*1 + 1

✔ T(n) = log
2
 n + 1 = O(log

2
 n)

Created by Pukar Karki, IOE

Recursion Tree

Homework

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n-1) + 1 when n > 1

T(n) = 1 when n = 1

Created by Pukar Karki, IOE

Recursion Tree

Homework

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n/4) + T(n/2) + n2 when n > 1

T(n) = 1 when n = 1

Created by Pukar Karki, IOE

Substitution Method

✔ At first, we guess the form of solution.

✔ Then, we use induction to show that the guess is valid.

Created by Pukar Karki, IOE

Substitution Method

Example 1

Show that the complexity if the following RR is O(n3) using
substitution method.

T(n) = 4T(n/2) + n for n > 1

T(n) = 1 for n = 1

✔ Our guess is T(n) = O(n3)

✔ From the definition of Big O, T(n) ≤ c*n3 where c>0 and for all n>n
0
 ………. Eqn i)

✔ Now we show that Eqn i) is true using mathematical induction.

Created by Pukar Karki, IOE

Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 13

✔ 1 ≤ c which is true for all positive values of c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k3 ………. Eqn ii)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn ii) becomes.

✔ T(n/2) ≤ c. (n/2)3

✔ Or, T(n/2) ≤ c. n3/8

Created by Pukar Karki, IOE

Substitution Method

Now,

✔ T(n) = 4T(n/2) + n

✔ T(n) ≤ 4 * c * n3/8 + n

✔ T(n) ≤ c * n3/2 + n

✔ T(n) ≤ c * n3 - c * n3/2 + n

✔ T(n) ≤ c * n3 - n(c * n2/2 – 1)

✔ Thus, T(n) ≤ cn3 for all n > 0

✔ Hence, T(n) = O(n3)

Created by Pukar Karki, IOE

Substitution Method

Example 2

Show that the complexity if the following RR is O(n2) using
substitution method.

T(n) = 4T(n/2) + n for n > 1

T(n) = 1 for n = 1

✔ Our guess is T(n) = O(n2)

✔ From the definition of Big O, T(n) ≤ c*n2 for all n>n
0
 ………. Eqn i)

✔ Now we show that Eqn i) is true using mathematical induction.

Created by Pukar Karki, IOE

Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 12

✔ 1 ≤ c which is true for all positive values of c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k2 ………. Eqn ii)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn ii) becomes.

✔ T(n/2) ≤ c. (n/2)2

✔ Or, T(n/2) ≤ c. n2/4

Created by Pukar Karki, IOE

Substitution Method

Now,

✔ T(n) = 4T(n/2) + n

✔ T(n) ≤ 4 * c * n2/4 + n

✔ T(n) ≤ c * n2 + n

✔ It is not possible to show c * n2 + n ≤ cn2 for all n > 0

✔ Now, we try to subtract lower order terms

Created by Pukar Karki, IOE

Substitution Method

Since, T(n) = O(n2) we can write

✔ T(n) ≤ cn2 - dn for all n>n0[Because cn2 – dn ≤ cn2] ………. Eqn iii)

✔ Now we show that Eqn iii) is true using mathematical induction.

Created by Pukar Karki, IOE

Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 12 - d.1

✔ 1 ≤ c - d which is true for all positive values of c and d<c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k2 – d.k ………. Eqn iv)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn iv) becomes.

✔ T(n/2) ≤ c. (n/2)2 - d.n/2

✔ Or, T(n/2) ≤ c. n2/4 - d.n/2

Created by Pukar Karki, IOE

Substitution Method

Now,

✔ T(n) = 4T(n/2) + n

✔ T(n) ≤ 4 [c * n2/4 – d*n/2] + n

✔ T(n) ≤ c * n2 - 2*d*n + n

✔ T(n) ≤ c * n2 - d*n - d*n + n

✔ T(n) ≤ (c * n2 - d*n) – n(d - 1)

✔ Thus, T(n) ≤ c.n2 - d.n for all n > 0

✔ Hence, T(n) = O(n2)

Created by Pukar Karki, IOE

Substitution Method

Example 3

Show that the complexity if the following RR is O(n3) using
substitution method.

T(n) = 8T(n/2) + n2 for n > 1

T(n) = 1 for n = 1

✔ Our guess is T(n) = O(n3)

✔ From the definition of Big O, T(n) ≤ cn3 for all n>n
0
 ………. Eqn i)

✔ Now we show that Eqn i) is true using mathematical induction.

Created by Pukar Karki, IOE

Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 13

✔ 1 ≤ c which is true for all positive values of c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k3 ………. Eqn ii)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn ii) becomes.

✔ T(n/2) ≤ c. (n/2)3

✔ Or, T(n/2) ≤ c. n3/8

Created by Pukar Karki, IOE

Substitution Method

Now,

✔ T(n) = 8T(n/2) + n2

✔ T(n) ≤ 8 * c * n3/8 + n2

✔ T(n) ≤ c * n3 + n2

✔ It is not possible to show c * n2 + n2 ≤ cn3 for all n > 0

✔ Now, we try to subtract lower order terms

Created by Pukar Karki, IOE

Substitution Method

Since, T(n) = O(n3) we can write

✔ T(n) ≤ cn3 - dn2 for all n>n0[Because cn3 – dn2 ≤ cn3] ………. Eqn iii)

✔ Now we show that Eqn iii) is true using mathematical induction.

Created by Pukar Karki, IOE

Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 13 - d.12

✔ 1 ≤ c - d which is true for all positive values of c and d<c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k3 – d.k2 ………. Eqn iv)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn iv) becomes.

✔ T(n/2) ≤ c. (n/2)3 - d.(n/2)2

✔ Or, T(n/2) ≤ c. n3/8 - d.n2/4

Created by Pukar Karki, IOE

Substitution Method

Now,

✔ T(n) = 8T(n/2) + n2

✔ T(n) ≤ 8 [c * n3/8 – d*n2/4] + n2

✔ T(n) ≤ c * n3 - 2*d*n2 + n2

✔ T(n) ≤ c * n3 - d*n2 - d*n2 + n

✔ T(n) ≤ (c * n3 - d*n2) – n(d*n- 1)

✔ Thus, T(n) ≤ c.n3 - d.n2 ≤ cn3 for all n > 0

✔ Hence, T(n) = O(n3)

Created by Pukar Karki, IOE

Master’s Method

✔ The master method is a formula for solving recurrence relations
of the form

T(n) = aT(n/b) + f(n),

where,

– n = size of input

– a = number of sub-problems in the recursion

– n/b = size of each sub-problem All sub-problems are assumed to have
the same size.

– f(n) = cost of the work done outside the recursive call, which includes
the cost of dividing the problem and cost of merging the solutions

✔ Here, a ≥ 1 and b > 1 are constants, and f(n) is an asymptotically
positive function.

Created by Pukar Karki, IOE

Master’s Method

✔ An asymptotically positive function means that for a sufficiently large
value of n, we have f(n) > 0.

✔ The master theorem is used in calculating the time complexity of
recurrence relations (divide and conquer algorithms) in a simple and
quick way.

Created by Pukar Karki, IOE

Master’s Method

✔ If a ≥ 1 and b > 1 are constants and f(n) is an asymptotically positive
function, then the time complexity of a recursive relation is given by
T(n) = aT(n/b) + f(n) where, T(n) has the following asymptotic bounds

1. If f(n) = O(n log
b

 a-ϵ), then T(n) = Θ(nlog
b

a).

2. If f(n) = Θ(n log
b

 a), then T(n) = Θ(f(n) * log n)

3. If f(n) = Ω(n log
b

 a+ϵ), then T(n) = Θ(f(n)).

✔ ϵ > 0 is a constant.

Created by Pukar Karki, IOE

Master’s Method

Example 1

Solve the following RR using Master’s method

T(n) = 3 T(n/2) + n

✔ Comparing with T(n) = aT(n/b) + f(n), a = 3, b = 2 and f(n) = n

✔ Now nlog
b

a = nlog
2

3 = nlog
10

3 / log
10

2 = n1.584

✔ Since, f(n) = O(n log
b

 a-ϵ), then T(n) = Θ(nlog
b

a).[Choose ϵ = 0.1]

✔ T(n) = Θ(nlog
b

a) = Θ(nlog
2

3) = Θ(n1.584)

Created by Pukar Karki, IOE

Master’s Method

Example 2

Solve the following RR using Master’s method

T(n) = 4 T(n/2) + n2

✔ Comparing with T(n) = aT(n/b) + f(n), a = 4, b = 2 and f(n) = n2

✔ Now nlog
b

a = nlog
2

4 = n2

✔ Since, f(n) = Θ(n log
b

 a), then T(n) = Θ(n2 * log n).[Choose ϵ = 0.1]

✔ T(n) = Θ(n2 * log n)

Created by Pukar Karki, IOE

Master’s Method

Example 3

Solve the following RR using Master’s method

T(n) =9 T(n/3) + n

✔ Comparing with T(n) = aT(n/b) + f(n), a = 9, b = 3 and f(n) = n2

✔ Now nlog
b

a = nlog
3

9 = n2

✔ Since, f(n) = O(n log
b

 a-ϵ), then T(n) = Θ(nlog
b

a).[Choose ϵ = 0.1]

✔ T(n) = Θ(nlog
b

a) = Θ(n2)

Created by Pukar Karki, IOE

Master’s Method

Example 4

Solve the following RR using Master’s method

T(n) =3 T(n/4) + n log n

✔ Comparing with T(n) = aT(n/b) + f(n), a = 3, b = 4 and f(n) = n log n

✔ Now nlog
b

a = nlog
4

3 = n0.658

✔ Since, f(n) = Ω(n log
b

 a+ϵ), then T(n) = Θ(f(n)).[Choose ϵ = 0.1]

✔ T(n) = Θ(f(n)) = Θ(n log n)

Created by Pukar Karki, IOE

Master’s Method

Example 5

Solve the following RR using Master’s method

T(n) =2 T(n/4) + n0.5

✔ Comparing with T(n) = aT(n/b) + f(n), a = 2, b = 4 and f(n) = n0.5

✔ Now nlog
b

a = nlog
4

2 = n0.5

✔ Since, f(n) = Θ(n log
b

 a+ϵ), then T(n) = Θ(f(n)*log n).[Choose ϵ =

0.1]

✔ T(n) = Θ(f(n)*log n) = Θ(n0.5 log n)

Created by Pukar Karki, IOE

Master’s Method

Example 6

Solve the following RR using Master’s method

T(n) =2 T(2n/3) + 1

✔ Comparing with T(n) = aT(n/b) + f(n), a = 2, b = 1.5 and f(n) = 1

✔ Now nlog
b

a = nlog
1.5

2 = n1.709

✔ Since, f(n) = O(n log
b

 a+ϵ), then T(n) = Θ(nlog
b

a).[Choose ϵ = 0.1]

✔ T(n) = Θ(nlog
b

a) = Θ(n1.709)

Created by Pukar Karki, IOE

Substitution Method

Example 7

Solve the following RR using Master’s method

T(n) = 8T(n/2) + n2 for n > 1

✔ Comparing with T(n) = aT(n/b) + f(n), a = 8, b = 2 and f(n) = n2

✔ Now nlog
b

a = nlog
2

8 = n3

✔ Since f(n) = O(n log
b
 a-ϵ), then T(n) = Θ(nlog

b
a).

✔ T(n) = Θ(n3)

Created by Pukar Karki, IOE

Master’s Method

Inadmissible Equations

Created by Pukar Karki, IOE

Divide-and-Conquer Approach

✔ A divide-and-conquer algorithm recursively breaks down
a problem into two or more sub-problems of the same or
related type, until these become simple enough to be
solved directly.

✔ The solutions to the sub-problems are then combined to
give a solution to the original problem.

Created by Pukar Karki, IOE

Divide-and-Conquer Approach

Example
fibo(n)

{

 if (n == 1 || n==2)

 return 1;

 else

 return fibo(n-1) + fibo(n-2);

}

Created by Pukar Karki, IOE

Divide-and-Conquer Approach

✔ Designing efficient divide-and-conquer algorithms can be difficult.

✔ The correctness of a divide-and-conquer algorithm is usually proved
by mathematical induction, and its computational cost is often
determined by solving recurrence relations.

Created by Pukar Karki, IOE

Divide-and-Conquer Approach

Advantages

✔ Solving difficult problem

– Divide and conquer is a powerful tool for solving conceptually difficult problems: all it
requires is a way of breaking the problem into sub-problems, of solving the trivial cases and
of combining sub-problems to the original problem.

✔ Algorithm efficiency

– The divide-and-conquer paradigm often helps in the discovery of efficient algorithms. It
was the key, for example, to the quick-sort and merge-sort algorithms.

✔ Parallelism

– Divide-and-conquer algorithms are naturally adapted for execution in multi-processor
machines, especially shared-memory systems where the communication of data between
processors does not need to be planned in advance, because distinct sub-problems can be
executed on different processors.

✔ Memory access

– Divide-and-conquer algorithms naturally tend to make efficient use of memory caches.
The reason is that once a sub-problem is small enough, it and all its sub-problems can, in
principle, be solved within the cache, without accessing the slower main memory.

Created by Pukar Karki, IOE

Divide-and-Conquer Approach

This technique can be divided into the following three parts:

1. Divide: This involves dividing the problem into smaller sub-problems.

2. Conquer: Solve sub-problems by calling recursively until solved.

3. Combine: Combine the sub-problems to get the final solution of the
whole problem.

Created by Pukar Karki, IOE

Divide-and-Conquer Approach

Created by Pukar Karki, IOE

Sorting Algorithms

✔ Arrangement of data in some systematic order is called sorting
✔ We will discuss some recursive sorting algorithms.

– Merge Sort

– Quick Sort

– Heap Sort

Created by Pukar Karki, IOE

Merge Sort

✔ It is a divide and conquer algorithm.
✔ At first we divide the given list of item.

– List is divided into two parts from middle.

– The process is repeated until each sub-list contain exactly 1 item.

✔ Now is the turn for sort and combine (conquer)

– A list with a single element is considered sorted automatically.

– Pair of list is sorted and merged into one (i.e. approx. n/2 sublists of size 2).

– The sort and merge is keep on repeated until a single list of size n is found.

✔ The overall dividing and conquering is done recursively.

Created by Pukar Karki, IOE

Merge Sort

Divide Conquer

Created by Pukar Karki, IOE

Merge Sort

To sort A[l.. r]

1. Divide Step
✔ If a given array A has zero or one element, simply return; it is already sorted.
✔ Otherwise, split A[l..r] into two sub-arrays A[l..m] and A[m+1..r], each

containing about half of the elements of A[l .. r]. That is, m is the halfway
point of A[l..r]

2. Conquer Step
✔ Conquer by recursively sorting the two sub-arrays A[l..m] and A[m+1..r]

3. Combine Step
✔ Combine the elements back in A[l..m] by merging the two sorted sub-

arrays A[l..m] and A[m+1..r] into a sorted sequence.
✔ To accomplish this step, we will define a procedure MERGE (A, l, m, r).

Created by Pukar Karki, IOE

Merge Sort

Declare and initialize necessary variables

n-total number of elements in an array

a[n]-array containing data

p=0, r=n-1; first and last index of the array

MERGE-SORT (A, l, r)

1. IF l < r // Check for base case

2. THEN m = (p + r)/2 // Divide step

3. MERGE-SORT (A, l, m) // Conquer step.

4. MERGE-SORT (A, m+ 1, r) // Conquer step.

5. MERGE (A, l, m,r) // Conquer step.

Created by Pukar Karki, IOE

Merge Sort

Pseudocode

merge_sort(A, l, r)

{

 if(l<r)

 {

 m=(l+r)/2;

 merge_sort(a,l,m);

 merge_sort(a,m+1,r);

 merge(a,l,m+1,r);

 }

}

merge(A, l, m, r)

{

 x=l;

 k=l;

 y=m;

 while(x<m && y<=r)

 {

 if (a[x]<a[y])

 b[k++]=a[x++];

 else

 b[k++]=a[y++];

 }

 for(;x<m;x++,k++)

 b[k]=a[x];

 for(;y<=r;y++,k++)

 b[k]=a[y];

 for(i=l;i<=r;i++)

 a[i]=b[i];

Created by Pukar Karki, IOE

Merge Sort

Analysis

✔ Since, there are two recursive sub-problems of size n/2, the problem
is divided into two equal halves and there is also a need to merge the
solutions.

✔ Size of sub-problems = n/2

✔ Dividing and merging takes O(n)

✔ The recurrence relation can be written as

T(n) = 2T(n/2) + O(n), if n>1

T(n) = 1, if n = 2

✔ Solving the recurrence relation, we can get T(n) = O(n log2 n)

Created by Pukar Karki, IOE

Quick Sort

✔ Also called partition-exchange sort.
✔ Uses divide and conquer concept.
✔ One pivot element is chosen from within the list.
✔ The list is divided into two partition.

– All values less than the pivot are placed on left side of pivot.

– All greater values are placed on right side of the pivot.

✔ After a single pass, the pivot is in its proper position.
✔ The left and right partitions are sorted recursively using the same

method.
✔ Joining the left sorted, pivot and right sorted results with the list in

sorted order.

Created by Pukar Karki, IOE

Quick Sort

✔ Here is the three-step divide-and-conquer process for sorting a typical array A[l..r]

1) Divide:
– Partition (rearrange) the array A[l..r] into two (possibly empty) sub-arrays
A[l..pivot-1] and A[pivot+1..r] such that each element of A[l..pivot-1] is less
than or equal to A[pivot], which is, in turn, less than or equal to each element of
A[pivot+1..r].

– Compute the index pivot as part of this partitioning procedure.

2) Conquer: Sort the two sub-arrays A[l..pivot-1] and A[pivot+1..r] by recursive calls
to Quick sort.

3) Combine: Because the sub-arrays are already sorted, no work is needed to combine
them: the entire array A[l..r] is now sorted.

Created by Pukar Karki, IOE

Quick Sort

The following procedure implements quick sort:

QUICKSORT(A, l, r)

if (l < r)

{

 pivot = PARTITION(A, l, r)

 QUICKSORT(A, l, pivot-1)

 QUICKSORT(A, pivot+1, r)

}

To sort an entire array A, the initial call is QUICKSORT(A, 0, r).

Created by Pukar Karki, IOE

Quick Sort
Partitioning the array
partition(A,l,r)
{
 x=l;
 y=r;
 p=A[l];
while(x<y)
 {
 while(A[x]<=p)
 x++;
 while(A[y]>p)
 y--;
 if(x<y)
 {
 swap(A[x],A[y]);
 }
 A[l]=A[y];
 A[y]=p;
 return y;
 }
}

Created by Pukar Karki, IOE

Quick Sort

Best Case Analysis

✔ This algorithms works the best when the elements are divided into
two equal partitions.

✔ Thus the recurrence relation is

T(n) = 2T(n/2) + O(n)
✔ On solving it, we get

T(n) = O(n log2 n)

Created by Pukar Karki, IOE

Quick Sort

Created by Pukar Karki, IOE

Quick Sort

Worst Case Analysis

✔ This algorithms works in the worst way when the elements are already sorted.

✔ The worst-case behavior for Quick Sort occurs when the partitioning routine
produces one sub-problem with n-1 elements and one with 0 elements.

✔ We assume that this unbalanced partitioning arises in each recursive call. The
partitioning costs O(n) time.

✔ Since the recursive call on an array of size 0 just returns, T (0) = 1 and the
recurrence for the running time is

✔ Thus the recurrence relation is

T(n) = T(n-1) + T(0) + O(n)

T(n) = T(n-1) + O(n)
✔ On solving it, we get

T(n) = O(n2)

Created by Pukar Karki, IOE

Quick Sort

Created by Pukar Karki, IOE

Quick Sort

Average Case Analysis

Self Study

Created by Pukar Karki, IOE

Heaps

✔ It is an almost complete binary tree whose elements have keys that satisfy
the following heap property:

– the value of each node is less than or equal to the value in the parent
node.(MAX Heaps)

– the value of each node is greater than or equal to the value in the
parent node.(MIN Heaps)

✔ Heaps can be used to implement priority queue and heap sort algorithm.

Created by Pukar Karki, IOE

Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

Look at node number 1 to floor(6/2)

1

2 3

4 5 6

Created by Pukar Karki, IOE

Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

1

2 3

4 5 6

10>16, so we swap

Created by Pukar Karki, IOE

Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 16

7 17 10

1

2 3

4 5 6

19>7 and 19 >17,
So NO swap

Created by Pukar Karki, IOE

Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 16

7 17 10

1

2 3

4 5 6

15<19 and 15 <16, we swap
15 with MAX(19,16)

Created by Pukar Karki, IOE

Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

19

15 16

7 17 10

1

2 3

4 5 6

We need to
make a change
here as well.

Created by Pukar Karki, IOE

Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

19

17 16

7 15 10

1

2 3

4 5 6

Created by Pukar Karki, IOE

Heaps - Representation
Array Representation of Heaps

✔ A heap can be stored as an array.

✔ Root of tree is at A[1].

✔ Left child of A[i] will be at A[2i]

✔ Right child of A[i] will be at A[2i+1]

✔ Parent of A[i] = A[floor(i/2)]

✔ The elements in the sub-array
A[floor(n/2)+1……..n] are leaves.

19

17 16

7 15 10

1

2 3

4 5 6

Created by Pukar Karki, IOE

Heaps – Inserting an Element
✔ Elements are always inserted next to right-most leaf at the bottom level.

✔ Then, we restore the heap property.

✔ Suppose we are inserting 25 to the following heap

19

17 16

7 15 10

1

2 3

4 5 6

Created by Pukar Karki, IOE

Heaps – Inserting an Element
✔ Elements are always inserted next to right-most leaf at the bottom level.

✔ Then, we restore the heap property.

✔ Suppose we are inserting 25 to the following heap

19

17 16

7 15 10

1

2 3

4 5 6

25

25 is inserted next to right-most leaf,
Now we restore heap property.

7

Created by Pukar Karki, IOE

Heaps – Inserting an Element
✔ Suppose we are inserting 25 to the following heap.

✔ Now 25 > 16 so we swap.

19

17 16

7 15 10

1

2 3

4 5 6

25

7

Created by Pukar Karki, IOE

Heaps – Inserting an Element
✔ Suppose we are inserting 25 to the following heap.

✔ Now 25 > 19 so we swap.

19

17 25

7 15 10

1

2 3

4 5 6

16

7

Created by Pukar Karki, IOE

Heaps – Inserting an Element
✔ Suppose we are inserting 25 to the following heap.

✔ We finally have a heap.

25

17 19

7 15 10

1

2 3

4 5 6

16

7

Created by Pukar Karki, IOE

Heaps – Deleting an Element
✔ We always remove the root element from the heap.

✔ We move the last element in place of the root element and restore the heap
property.

✔ Suppose we perform a deletion.

25

17 19

7 15 10

1

2 3

4 5 6

16

7

Created by Pukar Karki, IOE

Heaps – Deleting an Element
✔ We can see that the last element 16 is moved to root and heap size

decreases by 1.

✔ Now we restore heap property.

16

17 19

7 15 10

1

2 3

4 5 6

Created by Pukar Karki, IOE

Heaps – Deleting an Element
✔ 16 < 19 so we swap.

16

17 19

7 15 10

1

2 3

4 5 6

Created by Pukar Karki, IOE

Heaps – Deleting an Element
✔ Now all nodes are following the heap property.

✔ So, we successfully deleted an element.

19

17 16

7 15 10

1

2 3

4 5 6

Created by Pukar Karki, IOE

Operations on Heap

1. Maintain/Restore the MAX-HEAP property.

– MAX-HEAPIFY

2. Create a MAX-HEAP from an array.

– BUILD-MAX-HEAP

3. Sort an array in place.

– HEAPSORT

Created by Pukar Karki, IOE

MAX-HEAPIFY

Algorithm

1. Find location of largest value among A[i], A[Left(i)] and A[Right(i)]

2. If the largest value is not A[i], MAX-HEAP property doesn’t holds so
exchange A[i] with the larger of two children to preserve MAX-HEAP
property.

3. Continue this process of compare/exchange down the heap until sub-
tree rooted at i is MAX-HEAP.

4. A sub-tree rooted at a leaf node is automatically MAX-HEAP

Created by Pukar Karki, IOE

MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY
operations on all the node that violets the heap property.

A[] = {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

1

2 3

4 5 6

Created by Pukar Karki, IOE

MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY
operations on all the node that violets the heap property.

A[] = {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

1

2 3

4 5 6

Heap Property is Violated
here at A[1], so we swap
A[1] with it’s larger children
which is 19

Created by Pukar Karki, IOE

MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY
operations on all the node that violets the heap property.

A[] = {15, 19, 10, 7, 17, 16}

19

15 10

7 17 16

1

2 3

4 5 6

Heap Property is Violated
here at A[2], so we swap
A[2] with it’s larger children
which is 17

Created by Pukar Karki, IOE

MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY
operations on all the node that violets the heap property.

A[] = {15, 19, 10, 7, 17, 16}

19

17 10

7 15 16

1

2 3

4 5 6

Heap Property is Violated
here at A[3], so we swap
A[3] with it’s larger children
which is 16

Created by Pukar Karki, IOE

MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY
operations on all the node that violets the heap property.

A[] = {15, 19, 10, 7, 17, 16}

19

17 16

7 15 10

1

2 3

4 5 6

Created by Pukar Karki, IOE

MAX-HEAPIFY

Pseudocode
MAX-HEAPIFY(A, i, n)

{

 l = left(i)

 r = right(i)

 largest = I

 If l ≤ n and A[l] > A[largest]

 largest = l

 If r ≤ n and A[r] > A[largest]

 largest = r

 If largest ≠ i

 swap(A[i], A[largest]

MAX-HEAPIFY(A, largest, n)

}

Created by Pukar Karki, IOE

MAX-HEAPIFY

Analysis
MAX-HEAPIFY(A, i, n)

{

 l = left(i)

 r = right(i)

 largest = I

 If l ≤ n and A[l] > A[largest]

 largest = l

 If r ≤ n and A[r] > A[largest]

 largest = r

 If largest ≠ i

 swap(A[i], A[largest]

MAX-HEAPIFY(A, largest, n)

}

✔ In the worst case, the MAX-HEAPIFY will be called
recursively h times where h is the height of heap(binary
tree).

✔ Since, each call to MAX-HEAPIFY takes constant time,
T(n) = O(h) = O(log

2
n)

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP

✔ To build a MAX-HEAP from any tree, we can start heapifying each sub-tree
from the bottom up and end up with a MAX-HEAP after the entire tree
satisfies MAX-HEAP property.

✔ We perform the heapify operation on all non-leaf nodes from floor(n/2) to 1.

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 3

2 16 9

1

2 3

4 5 6

10

7

16

2

4 5

14 8

8 9

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 3

2 16 9

1

2 3

4 5 6

10

7

16

2

4 5

14 8

8 9

✔ We will look at non-leaf nodes
from index 4 to index 1.

✔ At index 4, we
perform HEAPIFY
operation

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 3

14 16 9

1

2 3

4 5 6

10

7

16

2

4 5

2 8

8 9

✔ At index 3, we perform
HEAPIFY operation

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 10

14 16 9

1

2 3

4 5 6

3

7

16

2

4 5

2 8

8 9

✔ At index 2, we perform
HEAPIFY operation

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

16 10

14 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 8

8 9

✔ At index 1, we perform
HEAPIFY operation

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

16

4 10

14 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 8

8 9

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

16

14 10

4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 8

8 9

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

16

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 4

8 9

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP

Algorithm

BUILD-MAX-HEAP(A)

{

 n = length[A]

 for(i = floor(n/2); i>=1; i--)

 {

 MAX-HEAPIFY(A, i, n);

 }

}

Created by Pukar Karki, IOE

 BUILD-MAX-HEAP

Analysis

BUILD-MAX-HEAP(A)

{

 n = length[A]

 for(i = floor(n/2); i>=1; i--)

 {

 MAX-HEAPIFY(A, i, n);

 }

}

✔ In the worst case, the for loop runs
for O(n) times.

✔ Inside the for loop, the MAX-
HEAPIFY runs for O(log

2
n) times.

✔ T(n) = O(n)*O*(log
2
n)

✔ T(n) = O(n log
2
n)

Created by Pukar Karki, IOE

Heap Sort

✔ We can use the concept of heaps to sort numbers efficiently.

✔ The procedure is quite similar to selection sort, where we first find the
maximum element and place the maximum element at the end.

✔ We repeat the same process for other elements.

Created by Pukar Karki, IOE

Heap Sort

Algorithm

1. Build a MAX-HEAP from the array

2. Swap the root with the last element in the array.

3. Discard this last node by decreasing the heap size.

4. Perform MAX-HEAPIFY operation on the new root node.

5. Repeat until only one node remains.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

✔ At first, we create a
binary tree from the
given data.

4

1 3

2 16 9

1

2 3

4 5 6

10

7

16

2

4 5

14 8

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

16

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 4

8 9

✔ Then, we create a MAX-
HEAP

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

16

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 4

8 9

✔ Then, we swap the root
element with the last
element and decrease
the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node
until MAX-HEAP property
is restored.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

14

4 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

14

8 10

4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 16

8 9

✔ Then, we again swap
the root element with
the last element and
decrease the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

8 10

4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

8 10

4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node
until MAX-HEAP property
is restored.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

10

8 2

4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

10

8 9

4 16 2

1

2 3

4 5 6

3

7

1

2

4 5

14 16

8 9

✔ Then, we again swap
the root element with
the last element and
decrease the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

3

8 9

4 16 2

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

3

8 9

4 16 2

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node
until MAX-HEAP property
is restored.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

9

8 3

4 16 2

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we again swap
the root element with
the last element and
decrease the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

8 3

4 16 9

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

8 3

4 16 9

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node
until MAX-HEAP property
is restored.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

8

2 3

4 16 9

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

8

4 3

2 16 9

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we again swap
the root element with
the last element and
decrease the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

4 3

2 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

4 3

2 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node
until MAX-HEAP property
is restored.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 3

2 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

2 3

1 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we again swap
the root element with
the last element and
decrease the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node
until MAX-HEAP property
is restored.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

3

2 1

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we again swap
the root element with
the last element and
decrease the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node
until MAX-HEAP property
is restored.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

1 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we again swap
the root element with
the last element and
decrease the heap size.

Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ There is only one
element left and the list
is sorted.

Created by Pukar Karki, IOE

Heap Sort

Pseudocode

HeapSort(A)

{

 BuildHeap(A);

 n = length[A];

 for(i = n; i>=2; i--)

 {

 swap(A[1], A[n]);

 n = n – 1;

 MAX-HEAPIFY(A,1);

 }

}

Created by Pukar Karki, IOE

Heap Sort

Analysis

HeapSort(A)

{

 BUILD-MAX-HEAP(A);

 n = length[A];

 for(i = n; i>=2; i--)

 {

 swap(A[1], A[n]);

 n = n – 1;

 MAX-HEAPIFY(A,1);

 }

}

✔ In the worst case, BUILD-MAX-HEAP
takes O(n log2n) time.

✔ For loop runs for O(n) time.
✔ Inside for loop MAX-HEAPIFY runs for

O(log2 n) time.
✔ Thus, T(n) = O(n log2 n) + O(n)*O(log2 n)
✔ T(n) = O(n log2 n)

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

✔ The aim is to find the nonempty, contiguous subarray of A whose
values have the largest sum.

✔ We call this contiguous subarray the maximum subarray.

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

✔ Suppose we want to find a maximum subarray of the subarray
A[low...high].

✔ Divide-and-conquer suggests that we divide the subarray into two
subarrays of as equal size as possible.

✔ That is, we find the midpoint, say mid, of the subarray, and consider
the subarrays A[low...mid] and A[mid+1... high].

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

✔ Any contiguous subarray A[i...j] of A[low...high] must lie in exactly one
of the following places:

✔ entirely in the subarray A[low...mid], so that low ≤ i ≤ j ≤ mid,

✔ entirely in the subarray A[mid+1...high], so that mid < i ≤ j ≤ high, or

✔ crossing the midpoint, so that low ≤ i ≤ mid < j ≤ high.

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

✔ Therefore, a maximum subarray of A[low...high] must lie in exactly
one of these places.

✔ In fact, a maximum subarray of A[low...high] must have the greatest
sum over all subarrays entirely in A[low...mid], entirely in
A[mid+1...high] or crossing the midpoint.

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

✔ We can find maximum subarrays of A[low...mid] and A[mid+1...high]
recursively, because these two subproblems are smaller instances of
the problem of finding a maximum subarray.

✔ Thus, all that is left to do is find a maximum subarray that crosses the
midpoint, and take a subarray with the largest sum of the three.

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

✔ We can easily find a maximum subarray crossing the midpoint
in time linear in the size of the subarray A[low...high].

✔ As we can see on the figure below any subarray crossing the
midpoint is itself made of two subarrays A[i...mid] and
A[mid+1...j], where low ≤ i ≤ mid and mid < j ≤ high.

✔ Therefore, we just need to find maximum subarrays of the form
A[i... mid] and A[mid+1...j] and then combine them.

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

Created by Pukar Karki, IOE

The Maximum-Subarray Problem
✔ With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in

hand, we can write pseudocode for a divide-and-conquer algorithm to
solve the maximum-subarray problem:

Created by Pukar Karki, IOE

The Maximum-Subarray Problem

Created by Pukar Karki, IOE

The Maximum-Subarray Problem
Equation 1

On combining 1 and 2, we get

Equation 2

This recurrence is the same as recurrence for merge sort.
As we can see from the master method in , this recurrence has the solution
T(n) = O (n log2 n)

Created by Pukar Karki, IOE

Matrix Multiplication

✔ If A = (aij) and B = (bij) are square n x n matrices, then in the
product C = A x B, we define the entry cij, for I,j = 1, 2,…. n, by

Created by Pukar Karki, IOE

Matrix Multiplication

✔ The following procedure takes n x n matrices A and B and multiplies
them, returning their n x n product C. We assume that each matrix
has an attribute rows, giving the number of rows in the matrix.

✔ Because each of the
triply-nested for
loops run exactly n
iterations, and each
execution of line
takes constant time,
the SQUARE-MATRIX
MULTIPLY procedure
takes Θ(n3) time.

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

✔ Strassen’s remarkable recursive algorithm for multiplying n x n
matrices runs in Θ(nlog

2
7) time.

✔ Since log27 lies between 2.80 and 2.81, Strassen’s algorithm runs in
O(n2.81) time, which is asymptotically better than the simple SQUARE-
MATRIX-MULTIPLY procedure.

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

✔ To keep things simple, when we use a divide-and-conquer algorithm
to compute the matrix product C = A x B, we assume that n is an
exact power of 2 in each of the n x n matrices.

✔ We make this assumption because in each divide step, we will divide
n x n matrices into four n/2 x n/2 matrices, and by assuming that n is
an exact power of 2, we are guaranteed that as long as n ≥ 2, the
dimension n/2 is an integer.

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

✔ Suppose that we partition each of A, B, and C into four n/2 x n/2
matrices

so that we rewrite the equation C = A x B as

Equation 1

Equation 2

Equation 2 can be expanded as

Equation 3

Equation 4

Equation 5

Equation 6

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

✔ Each of these four equations specifies two multiplications of n/2 x n/2
matrices and the addition of their n/2 x n/2 products.

✔ We can use these equations to create a straightforward, recursive,
divide-and-conquer algorithm

Equation 3

Equation 4

Equation 5

Equation 6

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

2

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ Let T(n) be the time to multiply two n x n matrices using this

procedure. In the base case, when n = 1, we perform just the one
scalar multiplication in line 4, and so

T (1) = Θ(1)

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ The recursive case occurs when n > 1.

✔ Partitioning the matrices in line 5 takes Θ(1) time, using index
calculations.

✔ In lines 6–9, we recursively call SQUARE-MATRIX-MULTIPLY-
RECURSIVE a total of eight times.

✔ Because each recursive call multiplies two n/2 x n/2 matrices,
thereby contributing T(n/2) to the overall running time, the time
taken by all eight recursive calls is 8T(n/2).

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ We also must account for the four matrix additions in lines 6–9.

✔ Each of these matrices contains n2/4 entries, and so each of the
four matrix additions takes Θ(n2) time.

✔ Since the number of matrix additions is a constant, the total time
spent adding matrices in lines 6–9 is Θ(n2).

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ The total time for the recursive case, therefore, is the sum of the

partitioning time, the time for all the recursive calls, and the time
to add the matrices resulting from the recursive calls:

✔ Combining equations for base case and recursive cases

Using the master method, we obtain T(n) = Θ(n3).

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

✔ The key to Strassen’s method is to make the recursion tree slightly
less bushy.

✔ That is, instead of performing eight recursive multiplications of n/2 x
n/2 matrices, it performs only seven.

✔ The cost of eliminating one matrix multiplication will be several new
additions of n/2 x n/2 matrices, but still only a constant number of
additions.

✔ Strassen’s method has four steps:

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

1. Divide the input matrices A and B and output matrix C into n/2 x n/2 submatrices. This
step takes Θ(1) time by index calculation, just as in SQUARE-MATRIX-MULTIPLY-
RECURSIVE.

2. Create 10 matrices S1, S2, ….. S10, each of which is n/2 x n/2 and is the sum or
difference of two matrices created in step 1. We can create all 10 matrices in Θ(n2)
time.

3. Using the submatrices created in step 1 and the 10 matrices created in step 2,
recursively compute seven matrix products P1,P2, ….. P7. Each matrix Pi is n/2 x n/2.

4. Compute the desired submatrices C11, C12, C21, C22 of the result matrix C by adding
and subtracting various combinations of the Pi matrices. We can compute all four
submatrices in Θ(n2) time.

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

✔ In step 2, we create the following 10 matrices

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ In step 3, we recursively multiply n/2 x n/2 matrices seven times to compute

the following n/2 x n/2 matrices, each of which is the sum or difference of
products of A and B submatrices:

Note that the only multiplications we need to perform are those in the middle
column of the above equations. The right-hand column just shows what these
products equal in terms of the original submatrices created in step 1

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ Step 4 adds and subtracts the Pi matrices created in step 3 to construct the

four n/2 x n/2 submatrices of the product C. We start with

✔ Expanding out the right-hand side, with the expansion of each Pi on its own
line and vertically aligning terms that cancel out, we see that C11 equals

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ Similarly, we set

✔ and so C12 equals

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ Setting

makes C21 equal

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ Finally, we set

so that C22 equals

Created by Pukar Karki, IOE

Example

Use Strassen’s algorithm to compute the matrix product

Created by Pukar Karki, IOE

Example

Use Strassen’s algorithm to compute the matrix product

Let A be

So, A11 = 1

 A12 = 3

 A21 = 7

 A22 = 5

Let B be

So, B11 = 6

 B12 = 8

 B21 = 4

 B22 = 2

Created by Pukar Karki, IOE

Example

Use Strassen’s algorithm to compute the matrix product

S1= B12 – B22 = 6

S2 = A11 + A12 = 4

S3 = A21 + A22 = 12

S4 = B21 - B11= -2

S5 = A11 + A22= 6

S6 = B11 + B22= 8

S7 = A12 - A22= -2

S8 = B21+B22= 6

S9 = A11 - A21= -6

S10 = B11 + B12= 14

A11 = 1
A12 = 3
A21 = 7
A22 = 5

B11 = 6
B12 = 8
B21 = 4
B22 = 2

Created by Pukar Karki, IOE

Example
Use Strassen’s algorithm to compute the matrix product

P1= A11.S1 = 1*6 = 6

P2 = S2.B22 = 4*2 = 8

P3 = S3.B11 = 12*6 = 72

P4 = A22.S4 = 5*-2 = -10

P5 = S5.S6 = 6*8 = 48

P6 = S7.S8= -2*6 = -12

P7 = S9.S10= -6*14 = -84

A11 = 1
A12 = 3
A21 = 7
A22 = 5

B11 = 6
B12 = 8
B21 = 4
B22 = 2

S1= 6
S2 = 4
S3 = 12
S4 = -2
S5 = 6
S6 = 8
S7 = -2
S8 = 6
S9 = -6
S10 = 14

Created by Pukar Karki, IOE

Example
Use Strassen’s algorithm to compute the matrix product

C11 = P5 + P4 - P2 + P6 = 48 – 10 – 8 – 12 = 18

C12 = P1 + P2 = 14

C21 = P3 + P4 = 72 – 10 = 62

C22 = P5 + P1 - P3 – P7 = 48 + 6 – 72 + 84 = 66

P1 = 6
P2 = 8
P3 = 72
P4 = -10
P5 = 48
P6 = -12
P7 = -84

Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication

✔ Let us assume that once the matrix size n gets down to 1, we
perform a simple scalar multiplication. So,

T(n) = Θ(1), if n = 1

✔ When n > 1, steps 1, 2, and 4 take a total of Θ(n2) time, and
step 3 requires us to perform seven multiplications of n/2 x n/2
matrices.

✔ Hence, we obtain the following recurrence for the running time
T(n) of Strassen’s algorithm:

 Using master’s method T (n) = Θ(nlog
2

7)

Created by Pukar Karki, IOE

Review Questions

1. Why is solving recurrence relation essential while analyzing algorithms?

2. Write the algorithm for quick sort and compute it’s worst case time
complexity.

3. Explain and analyze the algorithm for merge sort.

4. What do you mean by a heap? Explain the algorithm for heap sort with an
example. Also discuss about it’s time and space complexity.

5. Is the array with values {23, 17, 14, 6, 13, 10, 1, 5, 7, 12} a max-heap?

6. Where in a max-heap might the smallest element reside, assuming that all
elements are distinct?

7. Illustrate the operation of PARTITION on the array A = {13, 19, 9, 5, 12, 8, 7,
4, 21, 2, 6, 11}.

8. Use Strassen’s algorithm to compute the matrix product

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200

