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Recursion

● A programming technique in which a function calls itself.

● One of the most effective techniques in programming that 
makes problem solving conceptually simple.
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Recursive Algorithms

Algorithm 1 : factorial

fact(n)

{

if(n == 0)

    return 1;

else

    return n*fact(n-1);

}
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Recursive Algorithms

Algorithm 2 : fibonacci term

fibo(n)

{

if (n == 1 || n==2)

    return 1;

else

    return fibo(n-1) + fibo(n-2);

}
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Recursive Algorithms

Algorithm 3: GCD

GCD(a,b)

{

if (b==0)

    return a;

else

    return GCD(b,a%b);

}
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Recurrence Relations

✔ Consider the recursive algorithm for computing factorial of a number.

fact(n)

{

if (n == 0) then

    return 1; // base case

else

    return n*fact(n-1); // recursive call

}

T(0) = 1

T(n) = T(n – 1) + O(1) for n > 0
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Recurrence Relations

✔ Consider the recursive algorithm for computing fibonacci term

fibo(n)

{

if (n == 1 || n == 2) then

    return 1; // base case

else

    return fibo(n-1)+fibo(n-2); // recursive call

}

T(1) = 1

T(2) = 1

T(n) = T(n – 1) + T(n-2) +  O(1) for n > 2

1 1 2 3 5 8 . . . . .
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Recurrence Relations

T(0) = 1

T(n) = T(n – 1) + O(1) for n > 0

✔ A recurrence is an equation or inequality that describes a 
function in terms of it’s values on smaller inputs.
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Recurrence Relations

T(0) = 1

T(n) = T(n – 1) + 2 for n > 0

✔ Let us expand the above equation

T(0) = 1

 ✔ T(n) = T(n – 1) + 2 for n > 0

 ✔ T(n) = T((n – 1) - 1) + 2 + 2 = T(n – 2) + 2.2

 ✔ T(n) = T((n-2) – 1) + 2 + 4 = T(n – 3) + 2.3

. . . . . 

T(n) = T(n – k) + 2k

We want it to express it in terms of T(0) so, n - k = 0 i.e. n = k.

 ✔ T(n) = T(0) + 2n

 ✔ T(n) = 1 + 2n = c*g(n) where c = 3 and g(n) = n.

 ✔ Therefor, T(n) = O(n)
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Recurrence Relations

✔ Solving a recurrence means that we have to obtain a function 
defined on the natural numbers that satisfy the recurrence.

✔ To analyze the complexity of recursive algorithms, we represent 
them in terms of recurrence relation and use any of the 
recurrence relation solving method.
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Solving Recurrences

We will study the following methods to solve recurrences in this course.

1. Iteration method.

2. Recursion Tree method.

3. Substitution method.

4. Master method.
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Iteration Method

✔ In this method, we expand the given recurrence relation until 
the boundary condition is met.

✔ Look at the following example.
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Iteration Method

Example 1

Solve the following recurrence relation by using iterative method.

T(n) = 2T(n/2) + 1 when n > 1

T(n) = 1 when n = 1

✔ T(n) = 2T(n/2) + 1

✔ T(n) = 2{2T(n/4) + 1} + 1 = 22T(n/22) + 2 + 1

✔ T(n) =  22{2T(n/23) + 1} + 2 + 1 = 23T(n/23) + 22 + 2 + 1

✔ ……

✔ T(n) = 2kT(n/2k) + 2k-1 +…….. + 4 + 2 + 1
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Iteration Method

✔ T(n) = 2kT(n/2k) + 2k-1 +…….. + 4 + 2 + 1 ----------- Eqn i)

✔ Assume, n/2k = 1 or, n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n
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Iteration Method

✔ Putting the value of n/2k  in in Eqn i)

✔ T(n) = 2kT(1) + 2k-1 +…….. + 4 + 2 + 1

✔ T(n) = 2k + 2k-1 +…….. + 4 + 2 + 20

✔ T(n) = 1(2k+1 – 1)/(2-1) {use S
n 
= a(rn – 1)/(r - 1)}

✔ T(n) = 2.2k – 1

✔ T(n) = 2.n – 1

✔ T(n) = O(n)
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Iteration Method

Example 2

Solve the following recurrence relation by using iterative method.

T(n) = T(n/3) + O(n) when n > 1

T(n) = 1 when n = 1

✔ T(n) = T(n/3) + O(n)

✔ T(n) = T(n/3) + cn

✔ T(n) = T(n/32) + cn/3 +  cn

✔ T(n) = T(n/33) +  cn/32 + cn/3 +  cn

✔ …..

✔ T(n) = T(n/3k) + cn/3k-1 + …… + cn/32 + cn/3 +  cn
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Iteration Method

✔ T(n) = T(n/3k) + cn/3k-1 + …… + cn/32 + cn/3 +  cn ---- Eqn i)

✔ Assume n/3k = 1 or, n = 3k

✔ Taking log
3
 on both sides, log

3
 n = log

3
 3k

✔ Or, log
3
 n = k log

3
 3

✔ k = log
3
 n
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Iteration Method

✔ Putting the value of n/3k  in in Eqn I)

✔ T(n) = T(n/3k) + cn/3k-1 + …… + cn/32 + cn/3 +  cn

✔ T(n) = T(1) + cn/3k-1 + …… + cn/32 + cn/3 +  cn

✔ T(n) = 1 +{ cn/3k-1 + …… + cn/32 + cn/3 +  cn}

✔ T(n) = 1 + cn(1/3k-1 + …… + 1/32 + 1/3 +  1}

✔ T(n) = 1 + cn{1.(1 – 1/3k)/(1-1/3)}

✔ T(n) = 1 + cn{(1 – 1/n)/(2/3)}

✔ T(n) = 1 + 3c(n-1)/2

✔ T(n) = O(n)
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Iteration Method

Example 3

Solve the following recurrence relation by using iterative method.

T(n) = T(n-1) + O(1) when n > 1

T(n) = 1 when n = 1

✔ T(n) = T(n-1) + O(1)

✔ T(n) = T(n-1) + 1

✔ T(n) = T(n-2) + 1 +  1

✔ T(n) = T(n-3) + 1 + 1 + 1

✔ …..

✔ T(n) = T(n-k) + 1 + …… + 1 + 1(k times)
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Iteration Method

✔ T(n) = T(n-k) + k ---- Eqn i)

✔ Assume n-k = 1 or, n = 1 + k

✔ k = n - 1
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Iteration Method

✔ Putting the value of n-k  in in Eqn I)

✔ T(n) = T(n-k) + k

✔ T(n) = T(1) + k

✔ T(n) = 1 + n - 1

✔ T(n) = n

✔ T(n) = O(n)
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Iteration Method

Example 4

Solve the following recurrence relation by using iterative method.

T(n) = 2T(n/2) + n when n > 1

T(n) = 1 when n = 1

✔ T(n) = 2T(n/2) + n

✔ T(n) = 2{2T(n/4) + n/2} + n = 22T(n/22)} + n + n 

✔ T(n) = 23 T(n/23)} + n+ n + n 

✔ …..

✔ T(n) = 2kT(n/2k) + n + ….. +  n + n (k times)



Created by Pukar Karki, IOE

Iteration Method

✔ T(n) = 2kT(n/2k) + n + ….. +  n + n (k times) ---- Eqn i)

✔ Assume n/2k = 1 or, n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n
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Iteration Method

✔ Putting the value of n/2k  in in Eqn I)

✔ T(n) = 2kT(n/2k) + n + ….. +  n + n (k times)

✔ T(n) = n.T(1) + n.k

✔ T(n) = n.1 + n.k

✔ T(n) = k.n + n

✔ T(n) = log
2
 n*n + n

✔ T(n) = n * log
2
 n + n

✔ T(n) = O(n log
2
 n)
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Recursion Tree

✔ This method is a pictorial representation of the iteration method.

✔ It takes the form of the tree where at each level nodes are 
expanded.

✔  It diagrams the tree of recursive calls and the amount of work 
done at each call.
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Recursion Tree
Example 1

Solve the following recurrence relation by using recursion tree method.

T(n) = 2T(n/2) + 1 when n > 1

T(n) = 1 when n = 1

1

T(n/2)T(n/2)



Created by Pukar Karki, IOE

Recursion Tree

T(n/22)T(n/22)

1

1

T(n/22)T(n/22)

1
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Recursion Tree

11

1

1

11

1

T(n/2k)T(n/2k) T(n/2k)T(n/2k)
T(n/2k)T(n/2k) T(n/2k)T(n/2k)

1 = 2o

2 = 21

4 = 22

2k
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Recursion Tree

✔ T(n) = 20   + 21 + ……. + 2k

✔ T(n) = 1 + 2(2k – 1)/(2 – 1) [ Use S
n 
= a(rn – 1)/( r - 1)]

✔ T(n) = 1 + 2(2k – 1)

✔ T(n) = 2.2k – 1 ---------------- Eqn i)
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Recursion Tree

✔ Assume, n/2k  = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of 2k  in in Eqn i)

✔ T(n) = 2.2k – 1 = 2.n – 1

✔ T(n) = O(n)
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Recursion Tree
Example 2

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n/2) + T(n/3) + O(1) when n > 1

T(n) = 1 when n = 1

1

T(n/3)T(n/2)
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Recursion Tree

T(n/6)T(n/4)

1

1

T(n/9)T(n/6)

1
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Recursion Tree

11

1

1

11

1

T(n/2k)

1 = 2o

2 = 21

4 = 22

2k
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Recursion Tree

✔ T(n) ≤ 20   + 21 + ……. + 2k

✔ T(n) = 1 + 2(2k – 1)/(2 – 1)

✔ T(n) = 1 + 2(2k – 1)

✔ T(n) = 2.2k – 1 ---------------- Eqn i)
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Recursion Tree

✔ Assume, n/2k  = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of 2k  in in Eqn i)

✔ T(n) ≤ 2.2k – 1 

✔ T(n) ≤ 2.n – 1

✔ T(n) = O(n)
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Recursion Tree

Example 3

Solve the following recurrence relation by using recursion tree method.

T(n) = 2T(n/2) + n when n > 1

T(n) = 1 when n = 1

n

T(n/2)T(n/2)



Created by Pukar Karki, IOE

Recursion Tree

T(n/22)T(n/22)

n

n/2

T(n/22)T(n/22)

n/2
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Recursion Tree

n/22n/22

n

n/2

n/22n/22

n/2

T(n/2k)T(n/2k) T(n/2k)T(n/2k)
T(n/2k)T(n/2k) T(n/2k)T(n/2k)

n

n

n

n
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Recursion Tree

✔ T(n) = n + n + … + n (k times)

✔ T(n) = n.k ---------------- Eqn i)
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Recursion Tree

✔ Assume, n/2k  = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of k  in in Eqn i)

✔ T(n) = n.k 

✔ T(n) = n log
2 
n 

✔ T(n) = O(n log
2 
n)
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Recursion Tree

Example 4

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n/2) + 1 when n > 1

T(n) = 1 when n = 1

1

T(n/2)
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Recursion Tree

1

1

1

T(n/2k)

…….
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Recursion Tree

✔ T(n) = 1 + 1 +  1 + …. + T(n/2k) ---------------- Eqn I)

✔ Assume, n/2k  = 1 or n = 2k

✔ Taking log
2
 on both sides, log

2
 n = log

2
 2k

✔ Or, log
2
 n = k log

2
 2

✔ k = log
2
 n

✔ Putting the value of n/2k  in in Eqn i)

✔ T(n) = 1 + 1 +  1 + … +  T(n/2k)

✔ T(n) = 1 + 1 +  1 + ….. + 1(k times) +  T(1)

✔ T(n) = k*1 + 1

✔ T(n) = log
2
 n + 1 = O( log

2
 n)
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Recursion Tree

Homework

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n-1) + 1 when n > 1

T(n) = 1 when n = 1
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Recursion Tree

Homework

Solve the following recurrence relation by using recursion tree method.

T(n) = T(n/4) + T(n/2) + n2 when n > 1

T(n) = 1 when n = 1
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Substitution Method

✔ At first, we guess the form of solution.

✔ Then, we use induction to show that the guess is valid.
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Substitution Method

Example 1

Show that the complexity if the following RR is O(n3) using 
substitution method.

T(n) = 4T(n/2) + n for n > 1

T(n) = 1 for n = 1

✔ Our guess is T(n) = O(n3)

✔ From the definition of Big O, T(n) ≤ c*n3  where c>0 and for all n>n
0
 ………. Eqn i)

✔ Now we show that Eqn i) is true using mathematical induction.
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Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 13

✔ 1 ≤ c  which is true for all positive values of c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k3 ………. Eqn ii)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn ii) becomes.

✔ T(n/2) ≤ c. (n/2)3

✔ Or, T(n/2) ≤ c. n3/8
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Substitution Method

Now,

✔ T(n) = 4T(n/2) + n

✔ T(n)  ≤  4 * c * n3/8 + n

✔ T(n)  ≤  c * n3/2 + n

✔ T(n)  ≤  c * n3  - c * n3/2 + n

✔ T(n)  ≤  c * n3  - n(c * n2/2 – 1)

✔ Thus, T(n) ≤ cn3  for all n > 0

✔ Hence, T(n) = O(n3)
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Substitution Method

Example 2

Show that the complexity if the following RR is O(n2) using 
substitution method.

T(n) = 4T(n/2) + n for n > 1

T(n) = 1 for n = 1

✔ Our guess is T(n) = O(n2)

✔ From the definition of Big O, T(n) ≤ c*n2 for all n>n
0
 ………. Eqn i)

✔ Now we show that Eqn i) is true using mathematical induction.
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Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 12

✔ 1 ≤ c  which is true for all positive values of c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k2 ………. Eqn ii)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn ii) becomes.

✔ T(n/2) ≤ c. (n/2)2

✔ Or, T(n/2) ≤ c. n2/4
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Substitution Method

Now,

✔ T(n) = 4T(n/2) + n

✔ T(n)  ≤  4 * c * n2/4 + n

✔ T(n)  ≤  c * n2 + n

✔ It is not possible to show c * n2 + n ≤ cn2  for all n > 0

✔ Now, we try to subtract lower order terms
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Substitution Method

Since,  T(n) = O(n2) we can write  

✔ T(n) ≤ cn2 - dn for all n>n0[Because cn2 – dn ≤ cn2] ………. Eqn iii)

✔ Now we show that Eqn iii) is true using mathematical induction.
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Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 12  - d.1

✔ 1 ≤ c - d which is true for all positive values of c and d<c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k2 – d.k ………. Eqn iv)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn iv) becomes.

✔ T(n/2) ≤ c. (n/2)2  - d.n/2

✔ Or, T(n/2) ≤ c. n2/4 - d.n/2
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Substitution Method

Now,

✔ T(n) = 4T(n/2) + n

✔ T(n)  ≤  4 [ c * n2/4 – d*n/2] + n

✔ T(n)  ≤  c * n2  - 2*d*n + n

✔ T(n)  ≤  c * n2  - d*n - d*n + n

✔ T(n)  ≤  (c * n2  - d*n) – n(d - 1)

✔ Thus, T(n) ≤ c.n2  - d.n for all n > 0

✔ Hence, T(n) = O(n2)
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Substitution Method

Example 3

Show that the complexity if the following RR is O(n3) using 
substitution method.

T(n) = 8T(n/2) + n2 for n > 1

T(n) = 1 for n = 1

✔ Our guess is T(n) = O(n3)

✔ From the definition of Big O, T(n) ≤ cn3 for all n>n
0
 ………. Eqn i)

✔ Now we show that Eqn i) is true using mathematical induction.
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Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 13

✔ 1 ≤ c  which is true for all positive values of c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k3 ………. Eqn ii)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn ii) becomes.

✔ T(n/2) ≤ c. (n/2)3

✔ Or, T(n/2) ≤ c. n3/8
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Substitution Method

Now,

✔ T(n) = 8T(n/2) + n2

✔ T(n)  ≤  8 * c * n3/8 + n2

✔ T(n)  ≤  c * n3 + n2

✔ It is not possible to show c * n2 + n2 ≤ cn3  for all n > 0

✔ Now, we try to subtract lower order terms
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Substitution Method

Since,  T(n) = O(n3) we can write  

✔ T(n) ≤ cn3 - dn2 for all n>n0[Because cn3 – dn2 ≤ cn3] ………. Eqn iii)

✔ Now we show that Eqn iii) is true using mathematical induction.
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Substitution Method

Basic Step:

For n = 1

✔ T(1) ≤ c. 13  - d.12

✔ 1 ≤ c - d  which is true for all positive values of c and d<c.

Inductive Step:

✔ Let us assume that it is true for all k < n.

✔ Then, T(k) ≤ c. k3 – d.k2 ………. Eqn iv)

✔ Since it is true for all k < n, it will be true for k = n/2

✔ Hence, Eqn iv) becomes.

✔ T(n/2) ≤ c. (n/2)3  - d.(n/2)2

✔ Or, T(n/2) ≤ c. n3/8 - d.n2/4
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Substitution Method

Now,

✔ T(n) = 8T(n/2) + n2

✔ T(n)  ≤  8 [ c * n3/8 – d*n2/4] + n2

✔ T(n)  ≤  c * n3  - 2*d*n2 + n2

✔ T(n)  ≤  c * n3  - d*n2 - d*n2 + n

✔ T(n)  ≤  (c * n3  - d*n2) – n(d*n- 1)

✔ Thus, T(n) ≤ c.n3  - d.n2  ≤ cn3 for all n > 0

✔ Hence, T(n) = O(n3)
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Master’s Method

✔ The master method is a formula for solving recurrence relations 
of the form

T(n) = aT(n/b) + f(n),

where,

– n = size of input

– a = number of sub-problems in the recursion

– n/b = size of each sub-problem All sub-problems are assumed  to have 
the same size.

– f(n) = cost of the work done outside the recursive call,  which includes 
the cost of dividing the problem and cost of merging the solutions

✔ Here, a ≥ 1 and b > 1 are constants, and f(n) is an asymptotically 
positive function.
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Master’s Method

✔ An asymptotically positive function means that for a sufficiently large 
value of n, we have f(n) > 0.

✔ The master theorem is used in calculating the time complexity of 
recurrence relations (divide and conquer algorithms) in a simple and 
quick way.
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Master’s Method

✔ If a ≥ 1 and b > 1 are constants and f(n) is an asymptotically positive 
function, then the time complexity of a recursive relation is given by 
T(n) = aT(n/b) + f(n) where, T(n) has the following asymptotic bounds

1. If f(n) = O(n log
b

 a-ϵ), then T(n) = Θ(nlog
b

a).

2. If f(n) = Θ(n log
b

 a), then T(n) = Θ(f(n) * log n)

3. If f(n) = Ω(n log
b

 a+ϵ), then T(n) = Θ(f(n)).

✔ ϵ > 0 is a constant.
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Master’s Method

Example 1

Solve the following RR using Master’s method

T(n) = 3 T(n/2) + n

✔ Comparing with T(n) = aT(n/b) + f(n), a = 3, b = 2 and f(n) = n

✔ Now nlog
b

a  = nlog
2

3  = nlog
10

3 / log
10

2 = n1.584 

✔ Since, f(n) = O(n log
b

 a-ϵ), then T(n) = Θ(nlog
b

a).[Choose ϵ = 0.1]

✔ T(n) =  Θ(nlog
b

a) = Θ(nlog
2

3) = Θ(n1.584 ) 
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Master’s Method

Example 2

Solve the following RR using Master’s method

T(n) = 4 T(n/2) + n2

✔ Comparing with T(n) = aT(n/b) + f(n), a = 4, b = 2 and f(n) = n2

✔ Now nlog
b

a  = nlog
2

4   = n2 

✔ Since, f(n) = Θ(n log
b

 a), then T(n) = Θ(n2 * log n).[Choose ϵ = 0.1]

✔ T(n) =  Θ(n2 * log n)
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Master’s Method

Example 3

Solve the following RR using Master’s method

T(n) =9 T(n/3) + n

✔ Comparing with T(n) = aT(n/b) + f(n), a = 9, b = 3 and f(n) = n2

✔ Now nlog
b

a  = nlog
3

9  = n2 

✔ Since, f(n) = O(n log
b

 a-ϵ), then T(n) = Θ(nlog
b

a).[Choose ϵ = 0.1]

✔ T(n) =  Θ(nlog
b

a ) = Θ(n2)
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Master’s Method

Example 4

Solve the following RR using Master’s method

T(n) =3 T(n/4) + n log n

✔ Comparing with T(n) = aT(n/b) + f(n), a = 3, b = 4 and f(n) = n log n

✔ Now nlog
b

a  = nlog
4

3   = n0.658

✔ Since, f(n) = Ω(n log
b

 a+ϵ), then T(n) = Θ(f(n)).[Choose ϵ = 0.1]

✔ T(n) =  Θ(f(n) ) = Θ(n log n)
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Master’s Method

Example 5

Solve the following RR using Master’s method

T(n) =2 T(n/4) + n0.5

✔ Comparing with T(n) = aT(n/b) + f(n), a = 2, b = 4 and f(n) = n0.5

✔ Now nlog
b

a  = nlog
4

2   = n0.5

✔ Since, f(n) = Θ(n log
b

 a+ϵ), then T(n) = Θ(f(n)*log n).[Choose ϵ = 

0.1]

✔ T(n) =  Θ(f(n)*log n ) = Θ(n0.5 log n)
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Master’s Method

Example 6

Solve the following RR using Master’s method

T(n) =2 T(2n/3) + 1

✔ Comparing with T(n) = aT(n/b) + f(n), a = 2, b = 1.5 and f(n) = 1

✔ Now nlog
b

a  = nlog
1.5

2   = n1.709

✔ Since, f(n) = O(n log
b

 a+ϵ), then T(n) = Θ(nlog
b

a ).[Choose ϵ = 0.1]

✔ T(n) =  Θ(nlog
b

a  ) = Θ(n1.709)
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Substitution Method

Example 7

Solve the following RR using Master’s method

T(n) = 8T(n/2) + n2 for n > 1

✔ Comparing with T(n) = aT(n/b) + f(n), a = 8, b = 2 and f(n) = n2

✔ Now nlog
b

a  = nlog
2

8   = n3

✔ Since f(n) = O(n log
b
 a-ϵ), then T(n) = Θ(nlog

b
a).

✔ T(n) = Θ(n3)
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Master’s Method

Inadmissible Equations
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Divide-and-Conquer Approach

✔ A divide-and-conquer algorithm recursively breaks down 
a problem into two or more sub-problems of the same or 
related type, until these become simple enough to be 
solved directly.

✔ The solutions to the sub-problems are then combined to 
give a solution to the original problem. 
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Divide-and-Conquer Approach

Example
fibo(n)

{

    if (n == 1 || n==2)

       return 1;

    else

       return fibo(n-1) + fibo(n-2);

}
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Divide-and-Conquer Approach

✔ Designing efficient divide-and-conquer algorithms can be difficult.

✔ The correctness of a divide-and-conquer algorithm is usually proved 
by mathematical induction, and its computational cost is often 
determined by solving recurrence relations. 
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Divide-and-Conquer Approach

Advantages

✔ Solving difficult problem

– Divide and conquer is a powerful tool for solving conceptually difficult problems: all it 
requires is a way of breaking the problem into sub-problems, of solving the trivial cases and 
of combining sub-problems to the original problem. 

✔ Algorithm efficiency

– The divide-and-conquer paradigm often helps in the discovery of efficient algorithms. It 
was the key, for example, to the quick-sort and merge-sort algorithms.

✔ Parallelism

– Divide-and-conquer algorithms are naturally adapted for execution in multi-processor 
machines, especially shared-memory systems where the communication of data between 
processors does not need to be planned in advance, because distinct sub-problems can be 
executed on different processors.

✔ Memory access

– Divide-and-conquer algorithms naturally tend to make efficient use of memory caches. 
The reason is that once a sub-problem is small enough, it and all its sub-problems can, in 
principle, be solved within the cache, without accessing the slower main memory. 
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Divide-and-Conquer Approach

This technique can be divided into the following three parts:

1. Divide: This involves dividing the problem into smaller sub-problems.

2. Conquer: Solve sub-problems by calling recursively until solved.

3. Combine: Combine the sub-problems to get the final solution of the 
whole problem.
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Divide-and-Conquer Approach
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Sorting Algorithms

✔ Arrangement of data in some systematic order is called sorting
✔ We will discuss some recursive sorting algorithms.

– Merge Sort

– Quick Sort

– Heap Sort
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Merge Sort

✔ It is a divide and conquer algorithm.
✔ At first we divide the given list of item.

– List is divided into two parts from middle.

– The process is repeated until each sub-list contain exactly 1 item.

✔ Now is the turn for sort and combine (conquer)

– A list with a single element is considered sorted automatically.

– Pair of list is sorted and merged into one (i.e. approx. n/2 sublists of size 2).

– The sort and merge is keep on repeated until a single list of size n is found.

✔ The overall dividing and conquering is done recursively.
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Merge Sort

Divide Conquer
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Merge Sort

To sort A[l.. r]

1. Divide Step
✔ If a given array A has zero or one element, simply return; it is already sorted. 
✔ Otherwise, split A[l..r] into two sub-arrays A[l..m] and A[m+1..r], each 

containing about half of the elements of A[l .. r]. That is, m is the halfway 
point of A[l..r]

2. Conquer Step
✔ Conquer by recursively sorting the two sub-arrays A[l..m] and A[m+1..r]

3. Combine Step
✔ Combine the elements back in A[l..m] by merging the two sorted sub-

arrays A[l..m] and A[m+1..r] into a sorted sequence. 
✔ To accomplish this step, we will define a procedure MERGE (A, l, m, r).
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Merge Sort

Declare and initialize necessary variables

n-total number of elements in an array

a[n]-array containing data

p=0, r=n-1; first and last index of the array

MERGE-SORT (A, l, r)

1.    IF l < r                                             // Check for base case

2.    THEN m = (p + r)/2                // Divide step

3.    MERGE-SORT (A, l, m)                        // Conquer step.

4.    MERGE-SORT (A,  m+ 1, r)                  // Conquer step.

5.    MERGE (A, l, m,r)                            // Conquer step.
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Merge Sort

Pseudocode

merge_sort(A, l, r)

{

    if(l<r)

    {

        m=(l+r)/2;

        merge_sort(a,l,m);

        merge_sort(a,m+1,r);

        merge(a,l,m+1,r);

    }

}

merge(A, l, m, r)

{

    x=l;

    k=l;

    y=m;

    while(x<m && y<=r)

    {

        if (a[x]<a[y])

            b[k++]=a[x++];

        else

            b[k++]=a[y++];

    }

    for(;x<m;x++,k++)

        b[k]=a[x];

    for(;y<=r;y++,k++)

        b[k]=a[y];

    for(i=l;i<=r;i++)

        a[i]=b[i];
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Merge Sort

Analysis

✔ Since, there are two recursive sub-problems of size n/2, the problem 
is divided into two equal halves and there is also a need to merge the 
solutions.

✔ Size of sub-problems = n/2

✔ Dividing  and merging takes O(n)

✔ The recurrence relation can be written as

T(n) = 2T(n/2) + O(n), if n>1

T(n) = 1, if n = 2

✔ Solving the recurrence relation, we can get T(n) = O(n log2 n)
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Quick Sort

✔ Also called partition-exchange sort.
✔ Uses divide and conquer concept.
✔ One pivot element is chosen from within the list.
✔ The list is divided into two partition.

– All values less than the pivot are placed on left side of pivot.

– All greater values are placed on right side of the pivot.

✔ After a single pass, the pivot is in its proper position.
✔ The left and right partitions are sorted recursively using the same 

method.
✔ Joining the left sorted, pivot and right sorted results with the list in 

sorted order.
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Quick Sort

✔ Here is the three-step divide-and-conquer process for sorting a typical array A[l..r]

1) Divide:
– Partition (rearrange) the array A[l..r] into two (possibly empty) sub-arrays 
A[l..pivot-1] and A[pivot+1..r] such that each element of A[l..pivot-1] is less 
than or equal to A[pivot], which is, in turn, less than or equal to each element of 
A[pivot+1..r].

– Compute the index pivot as part of this partitioning procedure.

2) Conquer: Sort the two sub-arrays A[l..pivot-1] and A[pivot+1..r] by recursive calls 
to Quick sort.

3) Combine: Because the sub-arrays are already sorted, no work is needed to combine 
them: the entire array A[l..r] is now sorted.
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Quick Sort

The following procedure implements quick sort:

QUICKSORT(A, l, r) 

if (l < r)

{

    pivot =  PARTITION(A, l, r)

    QUICKSORT(A, l, pivot-1)

    QUICKSORT(A, pivot+1, r)

}

To sort an entire array A, the initial call is QUICKSORT(A, 0, r).
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Quick Sort
Partitioning the array
partition(A,l,r)
{
    x=l;
    y=r;
    p=A[l];
while(x<y)
    {
        while(A[x]<=p)
            x++;
        while(A[y]>p)
            y--;
        if(x<y)
        {
            swap(A[x],A[y]);
        }
        A[l]=A[y];
        A[y]=p;
        return y;
    }
}
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Quick Sort

Best Case Analysis

✔ This algorithms works the best when the elements are divided into 
two equal partitions.

✔ Thus the recurrence relation is

T(n) = 2T(n/2) + O(n)
✔ On solving it, we get

T(n) = O(n log2 n)
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Quick Sort
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Quick Sort

Worst Case Analysis

✔ This algorithms works in the worst way when the elements are already sorted.

✔ The worst-case behavior for Quick Sort occurs when the partitioning routine 
produces one sub-problem with n-1 elements and one with 0 elements.

✔ We assume that this unbalanced partitioning arises in each recursive call. The 
partitioning costs O(n) time. 

✔ Since the recursive call on an array of size 0 just returns, T (0) = 1  and the 
recurrence for the running time is

✔ Thus the recurrence relation is

T(n) = T(n-1) + T(0) +  O(n)

T(n) = T(n-1) + O(n)
✔ On solving it, we get

T(n) = O(n2)
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Quick Sort
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Quick Sort

Average Case Analysis

Self Study



Created by Pukar Karki, IOE

Heaps

✔ It is an almost complete binary tree whose elements have keys that satisfy 
the following heap property:

– the value of each node is less than or equal to the value in the parent 
node.(MAX Heaps)

– the value of each node is greater than or equal to the value in the 
parent node.(MIN Heaps)

✔ Heaps can be used to implement priority queue and heap sort algorithm.
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Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

Look at node number 1 to floor(6/2)

1

2 3

4 5 6
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Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

1

2 3

4 5 6

10>16, so we swap
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Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 16

7 17 10

1

2 3

4 5 6

19>7 and 19 >17,
So NO swap
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Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

15

19 16

7 17 10

1

2 3

4 5 6

15<19 and 15 <16, we swap 
15 with MAX(19,16)
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Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

19

15 16

7 17 10

1

2 3

4 5 6

We need to 
make  a change 
here as well.
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Heaps

Example : Construct a MAX heap from a set of 6 elements {15, 19, 10, 7, 17, 16}

19

17 16

7 15 10

1

2 3

4 5 6
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Heaps - Representation
Array Representation of Heaps

✔ A heap can be stored as an array.

✔ Root of tree is at A[1].

✔ Left child of A[i] will be at A[2i]

✔ Right child of A[i] will be at A[2i+1]

✔ Parent of A[i] = A[floor(i/2)]

✔ The elements in the sub-array 
A[floor(n/2)+1……..n] are leaves.

19

17 16

7 15 10

1

2 3

4 5 6
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Heaps – Inserting an Element
✔ Elements are always inserted next to right-most leaf at the bottom level.

✔ Then, we restore the heap property.

✔ Suppose we are inserting 25 to the following heap

19

17 16

7 15 10

1

2 3

4 5 6
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Heaps – Inserting an Element
✔ Elements are always inserted next to right-most leaf at the bottom level.

✔ Then, we restore the heap property.

✔ Suppose we are inserting 25 to the following heap

19

17 16

7 15 10

1

2 3

4 5 6

25

25 is inserted next to right-most leaf,
Now we restore heap property.

7
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Heaps – Inserting an Element
✔ Suppose we are inserting 25 to the following heap.

✔ Now 25 > 16 so we swap.

19

17 16

7 15 10

1

2 3

4 5 6

25

7
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Heaps – Inserting an Element
✔ Suppose we are inserting 25 to the following heap.

✔ Now 25 > 19 so we swap.

19

17 25

7 15 10

1

2 3

4 5 6

16

7
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Heaps – Inserting an Element
✔ Suppose we are inserting 25 to the following heap.

✔ We finally have a heap.

25

17 19

7 15 10

1

2 3

4 5 6

16

7
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Heaps – Deleting an Element
✔ We always remove the root element from the heap.

✔ We move the last element in place of the root element and restore the heap 
property.

✔ Suppose we perform a deletion.

25

17 19

7 15 10

1

2 3

4 5 6

16

7
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Heaps – Deleting an Element
✔ We can see that the last element 16 is moved to root and heap size 

decreases by 1.

✔ Now we restore heap property.

16

17 19

7 15 10

1

2 3

4 5 6
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Heaps – Deleting an Element
✔ 16 < 19 so we swap.

16

17 19

7 15 10

1

2 3

4 5 6
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Heaps – Deleting an Element
✔ Now all nodes are following the heap property.

✔ So, we successfully deleted an element.

19

17 16

7 15 10

1

2 3

4 5 6
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Operations on Heap

1. Maintain/Restore the MAX-HEAP property.

– MAX-HEAPIFY

2. Create a MAX-HEAP from an array.

– BUILD-MAX-HEAP

3. Sort an array in place.

– HEAPSORT
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MAX-HEAPIFY

Algorithm

1. Find location of largest value among A[i], A[Left(i)] and A[Right(i)]

2. If the largest value is not A[i], MAX-HEAP property doesn’t holds so 
exchange A[i] with the larger of two children to preserve MAX-HEAP 
property.

3. Continue this process of compare/exchange down the heap until sub-
tree rooted at i is MAX-HEAP.

4. A sub-tree rooted at a leaf node is automatically MAX-HEAP



Created by Pukar Karki, IOE

MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY 
operations on all the node that violets the heap property.

A[ ] = {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

1

2 3

4 5 6



Created by Pukar Karki, IOE

MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY 
operations on all the node that violets the heap property.

A[ ] = {15, 19, 10, 7, 17, 16}

15

19 10

7 17 16

1

2 3

4 5 6

Heap Property is Violated 
here at A[1], so we swap 
A[1] with it’s larger children 
which is 19 
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MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY 
operations on all the node that violets the heap property.

A[ ] = {15, 19, 10, 7, 17, 16}

19

15 10

7 17 16

1

2 3

4 5 6

Heap Property is Violated 
here at A[2], so we swap 
A[2] with it’s larger children 
which is 17 
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MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY 
operations on all the node that violets the heap property.

A[ ] = {15, 19, 10, 7, 17, 16}

19

17 10

7 15 16

1

2 3

4 5 6

Heap Property is Violated 
here at A[3], so we swap 
A[3] with it’s larger children 
which is 16 
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MAX-HEAPIFY

Construct a binary tree of the following data and then perform MAX-HEAPIFY 
operations on all the node that violets the heap property.

A[ ] = {15, 19, 10, 7, 17, 16}

19

17 16

7 15 10

1

2 3

4 5 6
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MAX-HEAPIFY

Pseudocode
MAX-HEAPIFY(A, i, n)

{

    l = left(i)

    r = right(i)

    largest = I

    If l ≤ n and A[l] > A[largest]

        largest = l

    If r ≤ n and A[r] > A[largest]

        largest = r

    If largest ≠ i 

        swap(A[i], A[largest]

MAX-HEAPIFY(A, largest, n)

}
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MAX-HEAPIFY

Analysis
MAX-HEAPIFY(A, i, n)

{

    l = left(i)

    r = right(i)

    largest = I

    If l ≤ n and A[l] > A[largest]

        largest = l

    If r ≤ n and A[r] > A[largest]

        largest = r

    If largest ≠ i 

        swap(A[i], A[largest]

MAX-HEAPIFY(A, largest, n)

}

✔ In the worst case, the MAX-HEAPIFY will be called 
recursively h times where h is the height of heap(binary 
tree).

✔ Since, each call to MAX-HEAPIFY takes constant time,
T(n) = O(h) = O(log

2 
n)
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 BUILD-MAX-HEAP

✔ To build a MAX-HEAP from any tree, we can start heapifying each sub-tree 
from the bottom up and end up with a MAX-HEAP after the entire tree 
satisfies MAX-HEAP property.

✔ We perform the heapify operation on all non-leaf nodes from floor(n/2) to 1.
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 3

2 16 9

1

2 3

4 5 6

10

7

16

2

4 5

14 8

8 9
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 3

2 16 9

1

2 3

4 5 6

10

7

16

2

4 5

14 8

8 9

✔ We will look at non-leaf nodes 
from index 4 to index 1.

✔ At index 4, we 
perform HEAPIFY 
operation
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 3

14 16 9

1

2 3

4 5 6

10

7

16

2

4 5

2 8

8 9

✔ At index 3, we perform 
HEAPIFY operation
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

1 10

14 16 9

1

2 3

4 5 6

3

7

16

2

4 5

2 8

8 9

✔ At index 2, we perform 
HEAPIFY operation
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

16 10

14 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 8

8 9

✔ At index 1, we perform 
HEAPIFY operation
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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 BUILD-MAX-HEAP
Example : Construct a MAX heap from a set of following elements 

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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 BUILD-MAX-HEAP

Algorithm

BUILD-MAX-HEAP(A)

{

    n = length[A]

    for(i = floor(n/2); i>=1; i--)

    {

        MAX-HEAPIFY(A, i, n);

    }

}
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 BUILD-MAX-HEAP

Analysis

BUILD-MAX-HEAP(A)

{

    n = length[A]

    for(i = floor(n/2); i>=1; i--)

    {

        MAX-HEAPIFY(A, i, n);

    }

}

✔ In the worst case, the for loop runs 
for O(n) times.

✔ Inside the for loop, the MAX-
HEAPIFY runs for O(log

2 
n) times.

✔ T(n) = O(n)*O*(log
2
n)

✔ T(n) = O(n log
2 
n)
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Heap Sort

✔ We can use the concept of heaps to sort numbers efficiently.

✔ The procedure is quite similar to selection sort, where we first find the 
maximum element and place the maximum element at the end.

✔ We repeat the same process for other elements.
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Heap Sort

Algorithm

1. Build a MAX-HEAP from the array

2. Swap the root with the last element in the array.

3. Discard this last node by decreasing the heap size.

4. Perform MAX-HEAPIFY operation on the new root node.

5. Repeat until only one node remains.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

✔ At first, we create a 
binary tree from the 
given data.

4

1 3

2 16 9

1

2 3

4 5 6

10

7

16

2

4 5

14 8

8 9
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

16

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 4

8 9

✔ Then, we create a MAX-
HEAP
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

16

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 4

8 9

✔ Then, we swap the root 
element with the last 
element and decrease 
the heap size.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 16

8 9
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

14 10

8 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node 
until MAX-HEAP property 
is restored.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

14

4 10

8 16 9

1

2 3

4 5 6
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4 5
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8 9
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

14

8 10

4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

2 16

8 9

✔ Then, we again swap 
the root element with 
the last element and 
decrease the heap size.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2
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4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

14 16

8 9
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

8 10

4 16 9

1

2 3

4 5 6

3

7

1

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node 
until MAX-HEAP property 
is restored.



Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

10

8 2

4 16 9

1

2 3

4 5 6
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4 5

14 16

8 9
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

10

8 9

4 16 2

1

2 3

4 5 6

3

7

1

2

4 5

14 16

8 9

✔ Then, we again swap 
the root element with 
the last element and 
decrease the heap size.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

3

8 9

4 16 2

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node 
until MAX-HEAP property 
is restored.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

9

8 3

4 16 2

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we again swap 
the root element with 
the last element and 
decrease the heap size.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2
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4 16 9
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4 5 6
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

8 3

4 16 9

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node 
until MAX-HEAP property 
is restored.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

8
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

8

4 3

2 16 9

1

2 3

4 5 6

10

7

1

2

4 5

14 16

8 9

✔ Then, we again swap 
the root element with 
the last element and 
decrease the heap size.



Created by Pukar Karki, IOE

Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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2 16 9
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

4 3

2 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node 
until MAX-HEAP property 
is restored.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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2 16 9

1
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4 5 6
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14 16

8 9
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

4

2 3

1 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we again swap 
the root element with 
the last element and 
decrease the heap size.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node 
until MAX-HEAP property 
is restored.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

3

2 1

4 16 9

1
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4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we again swap 
the root element with 
the last element and 
decrease the heap size.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we perform MAX-
HEAPIFY on root node 
until MAX-HEAP property 
is restored.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

2

1 3

4 16 9

1
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4 5 6

10

7

8

2

4 5

14 16

8 9

✔ Then, we again swap 
the root element with 
the last element and 
decrease the heap size.
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Heap Sort
Example : Sort the set of following elements using Heap Sort

A[ ] = {4, 1, 3, 2, 16, 9, 10, 14, 8}

1

2 3

4 16 9

1

2 3

4 5 6

10

7

8

2

4 5

14 16

8 9

✔ There is only one 
element left and the list 
is sorted.
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Heap Sort

Pseudocode

HeapSort(A)

{

    BuildHeap(A);

    n = length[A];

    for(i = n; i>=2; i--)

    {

        swap(A[1], A[n]);

        n = n – 1;

        MAX-HEAPIFY(A,1);

    }

}
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Heap Sort

Analysis

HeapSort(A)

{

    BUILD-MAX-HEAP(A);

    n = length[A];

    for(i = n; i>=2; i--)

    {

        swap(A[1], A[n]);

        n = n – 1;

        MAX-HEAPIFY(A,1);

    }

}

✔ In the worst case, BUILD-MAX-HEAP 
takes O(n log2n) time.

✔ For loop runs for O(n) time.
✔ Inside for loop MAX-HEAPIFY runs for 

O(log2 n) time.
✔ Thus, T(n) = O(n log2 n) + O(n)*O(log2 n)
✔ T(n) = O(n log2 n)
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The Maximum-Subarray Problem

✔ The aim is to find the nonempty, contiguous subarray of A whose 
values have the largest sum. 

✔ We call this contiguous subarray the maximum subarray.
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The Maximum-Subarray Problem

✔ Suppose we want to find a maximum subarray of the subarray 
A[low...high].

✔ Divide-and-conquer suggests that we divide the subarray into two 
subarrays of as equal size as possible.

✔ That is, we find the midpoint, say mid, of the subarray, and consider 
the subarrays A[low...mid] and A[mid+1... high]. 
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The Maximum-Subarray Problem

✔ Any contiguous subarray A[i...j] of A[low...high] must lie in exactly one 
of the following places:

✔ entirely in the subarray A[low...mid], so that low ≤ i ≤  j ≤  mid,

✔ entirely in the subarray A[mid+1...high], so that mid < i ≤  j ≤  high, or

✔ crossing the midpoint, so that low ≤  i ≤  mid < j ≤  high.
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The Maximum-Subarray Problem

✔ Therefore, a maximum subarray of A[low...high] must lie in exactly 
one of these places.

✔ In fact, a maximum subarray of A[low...high] must have the greatest 
sum over all subarrays entirely in A[low...mid], entirely in 
A[mid+1...high] or crossing the midpoint. 
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The Maximum-Subarray Problem

✔ We can find maximum subarrays of A[low...mid] and A[mid+1...high] 
recursively, because these two subproblems are smaller instances of 
the problem of finding a maximum subarray.

✔ Thus, all that is left to do is find a maximum subarray that crosses the 
midpoint, and take a subarray with the largest sum of the three.
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The Maximum-Subarray Problem

✔ We can easily find a maximum subarray crossing the midpoint 
in time linear in the size of the subarray A[low...high].

✔ As we can see on the figure below any subarray crossing the 
midpoint is itself made of two subarrays A[i...mid] and 
A[mid+1...j], where low ≤ i ≤ mid and mid < j ≤ high. 

✔ Therefore, we just need to find maximum subarrays of the form 
A[i... mid] and A[mid+1...j] and then combine them. 
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The Maximum-Subarray Problem
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The Maximum-Subarray Problem
✔ With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in 

hand, we can write pseudocode for a divide-and-conquer algorithm to 
solve the maximum-subarray problem:
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The Maximum-Subarray Problem
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The Maximum-Subarray Problem
Equation 1

On combining 1 and 2, we get

Equation 2

This recurrence is the same as recurrence for merge sort.
As we can see from the master method in , this recurrence has the solution
T(n) = O (n log2 n)
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Matrix Multiplication

✔ If A = (aij) and B = (bij) are square n x n matrices, then in the 
product C = A x B, we define the entry cij, for I,j = 1, 2,…. n, by
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Matrix Multiplication

✔ The following procedure takes n x n matrices A and B and multiplies 
them, returning their n x n product C. We assume that each matrix 
has an attribute rows, giving the number of rows in the matrix.

✔ Because each of the 
triply-nested for 
loops run exactly n 
iterations, and each 
execution of line 
takes constant time, 
the SQUARE-MATRIX 
MULTIPLY procedure 
takes Θ(n3) time.
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Strassen’s Algorithm for Matrix Multiplication

✔ Strassen’s remarkable recursive algorithm for multiplying n x n 
matrices runs in Θ(nlog

2
7) time.

✔ Since log27 lies between 2.80 and 2.81, Strassen’s algorithm runs in 
O(n2.81) time, which is asymptotically better than the simple SQUARE-
MATRIX-MULTIPLY procedure.
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Strassen’s Algorithm for Matrix Multiplication

✔ To keep things simple, when we use a divide-and-conquer algorithm 
to compute the matrix product C = A x B, we assume that n is an 
exact power of 2 in each of the n x n matrices.

✔ We make this assumption because in each divide step, we will divide 
n x n matrices into four n/2 x n/2 matrices, and by assuming that n is 
an exact power of 2, we are guaranteed that as long as n ≥ 2, the 
dimension n/2 is an integer.
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Strassen’s Algorithm for Matrix Multiplication

✔ Suppose that we partition each of A, B, and C into four n/2 x n/2 
matrices

so that we rewrite the equation C = A x B as

Equation 1

Equation 2

Equation 2 can be expanded as

Equation 3

Equation 4

Equation 5

Equation 6
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Strassen’s Algorithm for Matrix Multiplication

✔ Each of these four equations specifies two multiplications of n/2 x n/2 
matrices and the addition of their n/2 x n/2 products.

✔ We can use these equations to create a straightforward, recursive, 
divide-and-conquer algorithm

Equation 3

Equation 4

Equation 5

Equation 6
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Strassen’s Algorithm for Matrix Multiplication

2
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Strassen’s Algorithm for Matrix Multiplication
✔ Let T(n) be the time to multiply two n x n matrices using this 

procedure. In the base case, when n = 1, we perform just the one 
scalar multiplication in line 4, and so

T (1) =  Θ(1) 
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Strassen’s Algorithm for Matrix Multiplication
✔ The recursive case occurs when n > 1. 

✔ Partitioning the matrices in line 5 takes Θ(1) time, using index 
calculations. 

✔ In lines 6–9, we recursively call SQUARE-MATRIX-MULTIPLY-
RECURSIVE a total of eight times. 

✔ Because each recursive call multiplies two n/2 x n/2 matrices, 
thereby contributing T(n/2) to the overall running time, the time 
taken by all eight recursive calls is 8T(n/2).
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Strassen’s Algorithm for Matrix Multiplication
✔ We also must account for the four matrix additions in lines 6–9.

✔ Each of these matrices contains n2/4 entries, and so each of the 
four matrix additions takes Θ(n2) time.

✔ Since the number of matrix additions is a constant, the total time 
spent adding matrices in lines 6–9 is Θ(n2).
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Strassen’s Algorithm for Matrix Multiplication
✔ The total time for the recursive case, therefore, is the sum of the 

partitioning time, the time for all the recursive calls, and the time 
to add the matrices resulting from the recursive calls:

✔ Combining equations for base case and recursive cases

Using the master method, we obtain T(n) = Θ(n3).
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Strassen’s Algorithm for Matrix Multiplication

✔ The key to Strassen’s method is to make the recursion tree slightly 
less bushy.

✔ That is, instead of performing eight recursive multiplications of n/2 x 
n/2 matrices, it performs only seven.

✔ The cost of eliminating one matrix multiplication will be several new 
additions of n/2 x n/2 matrices, but still only a constant number of 
additions.

✔ Strassen’s method has four steps:
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Strassen’s Algorithm for Matrix Multiplication

1. Divide the input matrices A and B and output matrix C into n/2 x n/2 submatrices. This 
step takes Θ(1) time by index calculation, just as in SQUARE-MATRIX-MULTIPLY-
RECURSIVE.

2. Create 10 matrices S1, S2, ….. S10, each of which is n/2 x n/2 and is the sum or 
difference of two matrices created in step 1. We can create all 10 matrices in Θ(n2) 
time.

3. Using the submatrices created in step 1 and the 10 matrices created in step 2, 
recursively compute seven matrix products P1,P2, ….. P7. Each matrix Pi is n/2 x n/2.

4. Compute the desired submatrices C11, C12, C21, C22 of the result matrix C by adding 
and subtracting various combinations of the Pi matrices. We can compute all four 
submatrices in Θ(n2) time.
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Strassen’s Algorithm for Matrix Multiplication

✔ In step 2, we create the following 10 matrices



Created by Pukar Karki, IOE

Strassen’s Algorithm for Matrix Multiplication
✔ In step 3, we recursively multiply n/2 x n/2 matrices seven times to compute 

the following n/2 x n/2 matrices, each of which is the sum or difference of 
products of A and B submatrices:

Note that the only multiplications we need to perform are those in the middle 
column of the above equations. The right-hand column just shows what these 
products equal in terms of the original submatrices created in step 1
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Strassen’s Algorithm for Matrix Multiplication
✔ Step 4 adds and subtracts the Pi matrices created in step 3 to construct the 

four n/2 x n/2 submatrices of the product C. We start with

✔ Expanding out the right-hand side, with the expansion of each Pi on its own 
line and vertically aligning terms that cancel out, we see that C11 equals
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Strassen’s Algorithm for Matrix Multiplication
✔ Similarly, we set

✔ and so C12 equals
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Strassen’s Algorithm for Matrix Multiplication
✔ Setting

makes C21 equal
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Strassen’s Algorithm for Matrix Multiplication
✔ Finally, we set

so that C22 equals
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Example

Use Strassen’s algorithm to compute the matrix product
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Example

Use Strassen’s algorithm to compute the matrix product

Let A be

So, A11 = 1

 A12 = 3

 A21 = 7

 A22 = 5

Let B be

So, B11 = 6

 B12 = 8

 B21 = 4

 B22 = 2
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Example

Use Strassen’s algorithm to compute the matrix product

S1= B12 – B22 = 6

S2 = A11 + A12 = 4

S3 = A21 + A22 = 12

S4 = B21 - B11= -2

S5 = A11 + A22= 6

S6 = B11 + B22= 8

S7 = A12 - A22= -2

S8 = B21+B22= 6

S9 = A11 - A21= -6

S10 = B11 + B12= 14

A11 = 1
A12 = 3
A21 = 7
A22 = 5

B11 = 6
B12 = 8
B21 = 4
B22 = 2
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Example
Use Strassen’s algorithm to compute the matrix product

P1= A11.S1 = 1*6 = 6

P2 = S2.B22 = 4*2 = 8

P3 = S3.B11 = 12*6 = 72

P4 = A22.S4 = 5*-2 = -10

P5 = S5.S6 = 6*8 = 48

P6 = S7.S8= -2*6 = -12

P7 = S9.S10= -6*14 = -84

A11 = 1
A12 = 3
A21 = 7
A22 = 5

B11 = 6
B12 = 8
B21 = 4
B22 = 2

S1=  6 
S2 = 4
S3 = 12
S4 = -2
S5 = 6
S6 = 8
S7 = -2
S8 = 6
S9 = -6
S10 = 14
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Example
Use Strassen’s algorithm to compute the matrix product

C11 = P5 + P4 - P2 + P6  = 48 – 10 – 8 – 12 = 18

C12 = P1 + P2 = 14 

C21 = P3 + P4 = 72 – 10 = 62

C22 = P5 + P1 - P3 – P7 = 48 + 6 – 72 + 84 = 66 

P1 = 6
P2 = 8
P3 = 72
P4 = -10
P5 = 48
P6 = -12
P7 = -84
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Strassen’s Algorithm for Matrix Multiplication

✔ Let us assume that once the matrix size n gets down to 1, we 
perform a simple scalar multiplication. So,

T(n) = Θ(1), if n = 1

✔ When n > 1, steps 1, 2, and 4 take a total of Θ(n2) time, and 
step 3 requires us to perform seven multiplications of n/2 x n/2 
matrices.

✔ Hence, we obtain the following recurrence for the running time 
T(n) of Strassen’s algorithm:

 Using master’s method T (n) = Θ(nlog
2

7)
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Review Questions

1. Why is solving recurrence relation essential while analyzing algorithms?

2. Write the algorithm for quick sort and compute it’s worst case time 
complexity.

3. Explain and analyze the algorithm for merge sort.

4. What do you mean by a heap? Explain the algorithm for heap sort with an 
example. Also discuss about it’s time and space complexity.

5. Is the array with values {23, 17, 14, 6, 13, 10, 1, 5, 7, 12} a max-heap?

6. Where in a max-heap might the smallest element reside, assuming that all 
elements are distinct?

7. Illustrate the operation of PARTITION on the array A = {13, 19, 9, 5, 12, 8, 7, 
4, 21, 2, 6, 11}.

8. Use Strassen’s algorithm to compute the matrix product
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